Solveeit Logo

Question

Question: \[\lim_{\alpha \rightarrow \beta}\frac{\sin^{2}\alpha - \sin^{2}\beta}{\alpha^{2} - \beta^{2}}\]...

limαβsin2αsin2βα2β2\lim_{\alpha \rightarrow \beta}\frac{\sin^{2}\alpha - \sin^{2}\beta}{\alpha^{2} - \beta^{2}}

A

0

B

1

C

sinββ\frac{\sin\beta}{\beta}

D

sin2β2β\frac{\sin 2\beta}{2\beta}

Answer

sin2β2β\frac{\sin 2\beta}{2\beta}

Explanation

Solution

limαβsin2αsin2βα2β2\lim_{\alpha \rightarrow \beta}\frac{\sin^{2}\alpha - \sin^{2}\beta}{\alpha^{2} - \beta^{2}}=limαβ0sin(α+β)sin(αβ)(α+β)(αβ)\lim_{\alpha - \beta \rightarrow 0}\frac{\sin(\alpha + \beta)\sin(\alpha - \beta)}{(\alpha + \beta)(\alpha - \beta)}

=limαβ0sin(αβ)(αβ)limαβ0sin(α+β)(α+β)\lim_{\alpha - \beta \rightarrow 0}\frac{\sin(\alpha - \beta)}{(\alpha - \beta)}\lim_{\alpha - \beta \rightarrow 0}\frac{\sin(\alpha + \beta)}{(\alpha + \beta)} =limαβsin(α+β)(α+β)\lim_{\alpha \rightarrow \beta}\frac{\sin(\alpha + \beta)}{(\alpha + \beta)}

=sin2β2β\frac{\sin 2\beta}{2\beta}.

Trick : By L’ Hospital’s rule, limαβ2sinαcosα2α=sin2β2β\lim_{\alpha \rightarrow \beta}\frac{2\sin\alpha\cos\alpha}{2\alpha} = \frac{\sin 2\beta}{2\beta}.