Solveeit Logo

Question

Question: $\lim_{→2} \frac{(sin2024)^x + (cos2024)^x - 1}{x-2}$...

lim2(sin2024)x+(cos2024)x1x2\lim_{→2} \frac{(sin2024)^x + (cos2024)^x - 1}{x-2}

Answer

(sin2024)2ln(sin2024)+(cos2024)2ln(cos2024)(\sin 2024)^2 \ln(\sin 2024) + (\cos 2024)^2 \ln(\cos 2024)

Explanation

Solution

The problem asks to evaluate the limit:

limx2(sin2024)x+(cos2024)x1x2\lim_{x \to 2} \frac{(\sin 2024)^x + (\cos 2024)^x - 1}{x-2}

Step 1: Check the form of the limit.

Let f(x)=(sin2024)x+(cos2024)x1f(x) = (\sin 2024)^x + (\cos 2024)^x - 1. When x=2x=2, the numerator is f(2)=(sin2024)2+(cos2024)21f(2) = (\sin 2024)^2 + (\cos 2024)^2 - 1. Using the identity sin2θ+cos2θ=1\sin^2\theta + \cos^2\theta = 1, we have f(2)=11=0f(2) = 1 - 1 = 0. The denominator at x=2x=2 is 22=02-2 = 0. Since the limit is of the form 00\frac{0}{0}, we can use L'Hopital's Rule or the definition of the derivative.

Step 2: Apply the definition of the derivative.

The limit can be recognized as the definition of the derivative. Let g(x)=(sin2024)x+(cos2024)xg(x) = (\sin 2024)^x + (\cos 2024)^x. Then the expression in the limit is g(x)1x2\frac{g(x) - 1}{x-2}. Since g(2)=(sin2024)2+(cos2024)2=1g(2) = (\sin 2024)^2 + (\cos 2024)^2 = 1, we can rewrite the limit as:

limx2g(x)g(2)x2\lim_{x \to 2} \frac{g(x) - g(2)}{x-2}

This is precisely the definition of the derivative of g(x)g(x) evaluated at x=2x=2, i.e., g(2)g'(2).

Step 3: Calculate the derivative g(x)g'(x).

Let a=sin2024a = \sin 2024 and b=cos2024b = \cos 2024. So g(x)=ax+bxg(x) = a^x + b^x. The derivative of cxc^x with respect to xx is cxlncc^x \ln c. Therefore, g(x)=ddx(ax)+ddx(bx)=axlna+bxlnbg'(x) = \frac{d}{dx}(a^x) + \frac{d}{dx}(b^x) = a^x \ln a + b^x \ln b.

Step 4: Evaluate g(2)g'(2).

Substitute x=2x=2 into g(x)g'(x):

g(2)=a2lna+b2lnbg'(2) = a^2 \ln a + b^2 \ln b

Substitute back a=sin2024a = \sin 2024 and b=cos2024b = \cos 2024:

g(2)=(sin2024)2ln(sin2024)+(cos2024)2ln(cos2024)g'(2) = (\sin 2024)^2 \ln(\sin 2024) + (\cos 2024)^2 \ln(\cos 2024)

Note: 20242024 radians is approximately 322×2π+0.425322 \times 2\pi + 0.425 radians. This means 20242024 radians lies in the first quadrant, so sin2024>0\sin 2024 > 0 and cos2024>0\cos 2024 > 0. Thus, the logarithms are well-defined.