Solveeit Logo

Question

Question: lim x=0 (sqrt(1+x) -1 )/x...

lim x=0 (sqrt(1+x) -1 )/x

Answer

1/2

Explanation

Solution

The given limit is of the indeterminate form 00\frac{0}{0} when x=0x=0. To evaluate this, we use the method of rationalization. We multiply the numerator and the denominator by the conjugate of the numerator, which is (1+x+1)(\sqrt{1+x} + 1). This eliminates the square root in the numerator, allowing us to simplify the expression and then substitute the limit value.

The given limit is: limx01+x1x\lim_{x \to 0} \frac{\sqrt{1+x} - 1}{x} When we substitute x=0x=0, we get 1+010=110=00\frac{\sqrt{1+0} - 1}{0} = \frac{1-1}{0} = \frac{0}{0}, which is an indeterminate form.

To resolve this, multiply the numerator and denominator by the conjugate of the numerator, (1+x+1)(\sqrt{1+x} + 1): limx01+x1x×1+x+11+x+1\lim_{x \to 0} \frac{\sqrt{1+x} - 1}{x} \times \frac{\sqrt{1+x} + 1}{\sqrt{1+x} + 1} Using the difference of squares formula, (ab)(a+b)=a2b2(a-b)(a+b) = a^2 - b^2, for the numerator: =limx0(1+x)212x(1+x+1)= \lim_{x \to 0} \frac{(\sqrt{1+x})^2 - 1^2}{x(\sqrt{1+x} + 1)} =limx0(1+x)1x(1+x+1)= \lim_{x \to 0} \frac{(1+x) - 1}{x(\sqrt{1+x} + 1)} =limx0xx(1+x+1)= \lim_{x \to 0} \frac{x}{x(\sqrt{1+x} + 1)} Since x0x \to 0, x0x \neq 0, we can cancel out xx from the numerator and denominator: =limx011+x+1= \lim_{x \to 0} \frac{1}{\sqrt{1+x} + 1} Now, substitute x=0x=0 into the simplified expression: =11+0+1= \frac{1}{\sqrt{1+0} + 1} =11+1= \frac{1}{\sqrt{1} + 1} =11+1= \frac{1}{1 + 1} =12= \frac{1}{2}