Solveeit Logo

Question

Question: lim x=0 (cos 2x-1)/(cos x -1)...

lim x=0 (cos 2x-1)/(cos x -1)

Answer

4

Explanation

Solution

The limit is of the form 00\frac{0}{0}. Using the trigonometric identities cos2x=12sin2x\cos 2x = 1 - 2\sin^2 x and cosx=12sin2(x/2)\cos x = 1 - 2\sin^2(x/2), the expression simplifies to 2sin2x2sin2(x/2)=sin2xsin2(x/2)\frac{-2\sin^2 x}{-2\sin^2(x/2)} = \frac{\sin^2 x}{\sin^2(x/2)}. By multiplying and dividing by x2x^2 and (x/2)2(x/2)^2 respectively, and using the standard limit limθ0sinθθ=1\lim_{\theta \to 0} \frac{\sin\theta}{\theta} = 1, the limit evaluates to 12x212(x2/4)=4\frac{1^2 \cdot x^2}{1^2 \cdot (x^2/4)} = 4.