Solveeit Logo

Question

Mathematics Question on limits and derivatives

limx0tanxsinxx3=\lim_{x\to0} \frac{\tan x -\sin x}{x^{3}} =

A

00

B

11

C

12 - \frac{1}{2}

D

12\frac{1}{2}

Answer

12\frac{1}{2}

Explanation

Solution

limx0tanxsinxx3(00from)\displaystyle\lim_{x\to0} \frac{\tan x -\sin x}{x^{3}} \left(\frac{0}{0} from\right)
Applying L-Hospital's rule
limx0sec2xcosx3x2(00from)\displaystyle\lim _{x\to 0} \frac{\sec^{2} x -\cos x}{3x^{2}} \left(\frac{0}{0} from\right)
Again applying L-Hospital's rule,
=limx02secxsecxtanx+sinx6x= \displaystyle\lim _{x\to 0} \frac{2 \sec x \sec x \tan x + \sin x}{6x}
=limx02sec2xlimx0tanxx+limx0sinxx6=\frac{ \displaystyle\lim _{x\to 0} 2 \sec ^{2} x \displaystyle\lim _{x\to 0} \frac{\tan x}{x} + \displaystyle\lim _{x\to 0} \frac{\sin x}{x}}{6}
=2.1.1+16=36=12= \frac{2.1.1+1}{6} = \frac{3}{6} =\frac{1}{2}