Solveeit Logo

Question

Mathematics Question on limits and derivatives

limxx1x=\lim_{x\to\infty} x^{\frac{1}{x}} =

A

1

B

\infty

C

0

D

noneofthesenone\, of \, these

Answer

1

Explanation

Solution

Let y=limxx1x y = \lim_{x\to\infty} x^{\frac{1}{x}} .....(i)
Taking log in (i) on both sides, we get
limx1xlogx\lim _{x\to \infty } \frac{1}{x } \log x
Applying L'-Hospital's Rule, we get
logy=limx1x1=limx1x=0\log y = \lim _{x\to \infty } \frac{\frac{1}{x}}{1} = \lim _{x\to \infty } \frac{1}{x} =0
or y=e0=1y = e^0 = 1