Solveeit Logo

Question

Mathematics Question on Limits

limx3x3+2x27x+94x3+9x2\lim_{x \to \infty} \frac{3x^3 + 2x^2 - 7x + 9 }{4x^3 + 9x - 2 } is equal to

A

29\frac{2}{9}

B

12\frac{1}{2}

C

92\frac{-9}{2}

D

34\frac{3}{4}

Answer

34\frac{3}{4}

Explanation

Solution

limx3x3+2x27x+94x3+9x2\displaystyle \lim _{x \rightarrow \infty} \frac{3 x^{3}+2 x^{2}-7 x+9}{4 x^{3}+9 x-2} =limxx3[3+2x7x2+9x3]x3[4+9x22x3]=\displaystyle \lim _{x \rightarrow \infty} \frac{x^{3}\left[3+\frac{2}{x}-\frac{7}{x^{2}}+\frac{9}{x^{3}}\right]}{x^{3}\left[4+\frac{9}{x^{2}}-\frac{2}{x^{3}}\right]} On putting xx \rightarrow \infty, we get =[3+00+0][4+00]=34=\frac{[3 + 0 - 0 + 0]}{[4 + 0 -0]}=\frac{3}{4}