Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

limxπ42sec2xf(t)dtx2π216lim_ { x \to \frac{\pi}{4}} \frac{ \int \limits_2^{sec^2 \, x} \, f \, (t) \, dt }{ x^2 - \frac{\pi^2}{ 16}} equals

A

8πf\frac{8}{ \pi} f

B

2πf\frac{2}{ \pi} f

C

2πf(12)\frac{2}{ \pi} f \bigg( \frac{1}{2}\bigg)

D

4f(2)4f (2)

Answer

8πf\frac{8}{ \pi} f

Explanation

Solution

limxπ42sec2xf(t)dtx2π216lim_ { x \to \frac{\pi}{4}} \frac{ \int \limits_2^{sec^2 \, x} \, f \, (t) \, dt }{ x^2 - \frac{\pi^2}{ 16}}
= limxπ/4f(sec2x)2secxsecxtanx2x lim_ { x \to \pi / 4} \frac{ f (sec^2 \, x) 2 \, sec \, x \, sec \, x \, tan \, x}{ 2x} \hspace25mm [00form]\bigg [ \frac{0}{0} form \bigg ]
\hspace25mm [using L' Hospital's rule]
= 2f(2)π/4=8π\frac{2 f (2)}{ \pi / 4} = \frac{8}{ \pi} f (2)