Solveeit Logo

Question

Mathematics Question on Limits

limx12sin(cos1(x))x1tan(cos1(x))\lim_{{x \to \frac{1}{\sqrt{2}}}} \frac{\sin(\cos^{-1}(x)) - x}{1 - \tan(\cos^{-1}(x))}
is equal to :

A

2\sqrt2

B

2-\sqrt2

C

12\frac{1}{\sqrt2}

D

12-\frac{1}{\sqrt2}

Answer

12-\frac{1}{\sqrt2}

Explanation

Solution

The correct answer is (D) : 12-\frac{1}{\sqrt2}
limx12sin(cos1(x))x1tan(cos1(x))\lim_{{x \to \frac{1}{\sqrt{2}}}} \frac{\sin(\cos^{-1}(x)) - x}{1 - \tan(\cos^{-1}(x))}
let cos1x=π4+θcos^{−1}⁡x=\frac{π}{4}+θ
limθ0sin(π4+θ)cos(π4+θ)1tan(π4+θ)\lim_{{\theta \to 0}} \frac{{\sin\left(\frac{\pi}{4} + \theta\right) - \cos\left(\frac{\pi}{4} + \theta\right)}}{{1 - \tan\left(\frac{\pi}{4} + \theta\right)}}
limθ02sin(π4+θπ4)11+tanθ1tanθ\lim_{{\theta \to 0}} \frac{{\sqrt{2}\sin\left(\frac{\pi}{4} + \theta - \frac{\pi}{4}\right)}}{{1 - \frac{1 + \tan\theta}{1 - \tan\theta}}}
limθ02sin(θ)2tan(θ)(1tan(θ)=12\lim_{{\theta \to 0}} \frac{{\sqrt{2}\sin(\theta)}}{{-2\tan(\theta)}}(1 - \tan(\theta) = -\frac{1}{\sqrt{2}}