Question
Mathematics Question on Limits
limx→211−tan(cos−1(x))sin(cos−1(x))−x
is equal to :
A
2
B
−2
C
21
D
−21
Answer
−21
Explanation
Solution
The correct answer is (D) : −21
limx→211−tan(cos−1(x))sin(cos−1(x))−x
let cos−1x=4π+θ
limθ→01−tan(4π+θ)sin(4π+θ)−cos(4π+θ)
limθ→01−1−tanθ1+tanθ2sin(4π+θ−4π)
limθ→0−2tan(θ)2sin(θ)(1−tan(θ)=−21