Question
Mathematics Question on Limits
limx→1[x2−5x+4x+2+3(x2−3x+2)x−4]
A
0
B
61
C
31
D
1
Answer
0
Explanation
Solution
limx→1[x2−5x+4x+2+3(x4−3x+2)x−4] = limx→1[(x−1)(x−2)x+2+3(x−1)(x−2)x−4] = limx→1[3(x−1)(x−2)(x−4)3(x2−4)+(x−4)2] = limx→1[3(x−1)(x−2)(x−4)4x2−8x+4] = 34limx→13(x−1)(x−2)(x−4)(x−1)2 = 34limx→1(x−2)(x−4)x−1