Solveeit Logo

Question

Mathematics Question on limits of trigonometric functions

limx0\lim_{{x \to 0}} \limits cos(sinx)\-cosxx4\frac{cos(sin x) \- cos x }{x^4} is equal to :

A

13\frac{1}{3}

B

14\frac{1}{4}

C

16\frac{1}{6}

D

112\frac{1}{12}

Answer

16\frac{1}{6}

Explanation

Solution

The correct answer is (C) : 119\frac{-11}{9}

limx0\lim_{{x \to 0}} \limits cos(sinx)cosxx4\frac{cos(sinx) - cosx}{x^4} = limx0\lim_{{x \to 0}} \limits 2sin(x+sinx).sin(xsinx2)x4\frac{2sin(x + sinx).sin(\frac{x - sinx}{2})}{x^4}
= limx0\lim_{{x \to 0}} \limits 2.((x+sinx2)(xsinx2)x42.\frac{(\frac{( x + sinx }{2})(\frac{x-sinx}{2})}{x^4}
= limx0\lim_{{x \to 0}} \limits 12.\frac{1}{2}. ((x+xx33!+x55!....)(xx+x33!....x4)(\frac{(x+x -\frac{x^3}{3!}+\frac{x^5}{5!}....)(x-x+\frac{x^3}{3!}....}{x^4})
= limx0\lim_{{x \to 0}} \limits 12.\frac{1}{2}. (2x23!+x45!....)(13!x25!1)(2-\frac{x^2}{3!}+\frac{x^4}{5!}....)(\frac{1}{3!}-\frac{x^2}{5!}-1)
= 16\frac{1}{6}