Solveeit Logo

Question

Mathematics Question on Limits

limx0e2sinx2sinx1x2\lim_{x \to 0} \frac{e^{2|\sin x|} - 2|\sin x| - 1}{x^2}

A

is equal to 1-1

B

does not exist

C

is equal to 11

D

is equal to 22

Answer

is equal to 22

Explanation

Solution

Consider the limit:

limx0e2sinx2sinx1x2\lim_{x \to 0} \frac{e^{2|\sin x|} - 2|\sin x| - 1}{x^2}

Expanding e2sinxe^{2|\sin x|} around x=0x = 0:

limx0e2sinx2sinx1sinx2sin2xx2\lim_{x \to 0} \frac{e^{2|\sin x|} - 2|\sin x| - 1}{|\sin x|^2} \cdot \frac{\sin^2 x}{x^2}

Let sinx=t|\sin x| = t:

limt0e2t2t1t2limx0sin2xx2\lim_{t \to 0} \frac{e^{2t} - 2t - 1}{t^2} \cdot \lim_{x \to 0} \frac{\sin^2 x}{x^2}

Evaluating the first limit:

limt02e2t22t1=2×1=2\lim_{t \to 0} \frac{2e^{2t} - 2}{2t} \cdot 1 = 2 \times 1 = 2