Solveeit Logo

Question

Mathematics Question on limits and derivatives

limx0e(1+2x)12xxis equal to:\lim_{x \to 0} \frac{e - (1 + 2x)^{\frac{1}{2x}}}{x} \quad \text{is equal to:}

A

e

B

2e-\frac{2}{e}

C

0

D

ee2e - e^2

Answer

e

Explanation

Solution

Let L=limx0e(1+2x)12xxL = \lim_{x \to 0} \frac{e - (1 + 2x)^{\frac{1}{2x}}}{x}.

Rewrite (1+2x)12x(1 + 2x)^{\frac{1}{2x}} using logarithms:

(1+2x)12x=eln(1+2x)2x.(1 + 2x)^{\frac{1}{2x}} = e^{\frac{\ln(1 + 2x)}{2x}}.

For small xx, use the approximation ln(1+2x)2x\ln(1 + 2x) \approx 2x. Thus:

ln(1+2x)2x1,\frac{\ln(1 + 2x)}{2x} \approx 1, so (1+2x)12xe1=e(1 + 2x)^{\frac{1}{2x}} \approx e^1 = e.

Expand ln(1+2x)\ln(1 + 2x) further using Taylor series:

ln(1+2x)=2x2x2+O(x3),\ln(1 + 2x) = 2x - 2x^2 + O(x^3), so ln(1+2x)2x=1x+O(x2).\frac{\ln(1 + 2x)}{2x} = 1 - x + O(x^2).

Hence,

(1+2x)12x=e1x+O(x2)=eexeO(x2)e(1x+O(x2)).(1 + 2x)^{\frac{1}{2x}} = e^{1 - x + O(x^2)} = e \cdot e^{-x} \cdot e^{O(x^2)} \approx e(1 - x + O(x^2)).

Subtract from ee:

e(1+2x)12xee(1x)=ex.e - (1 + 2x)^{\frac{1}{2x}} \approx e - e(1 - x) = e \cdot x.

Divide by xx:

e(1+2x)12xxexx=e.\frac{e - (1 + 2x)^{\frac{1}{2x}}}{x} \approx \frac{e \cdot x}{x} = e.

Therefore: e.e.