Question
Question: Lim x tends to 2024 (sinx-sin2024) /(cosx-cos2024)...
Lim x tends to 2024 (sinx-sin2024) /(cosx-cos2024)
Answer
-cot(2024)
Explanation
Solution
The limit is of the form 00 as x→2024. Using trigonometric identities sinx−sina=2cos(2x+a)sin(2x−a) and cosx−cosa=−2sin(2x+a)sin(2x−a), the expression simplifies to −cot(2x+a) for x=a. Taking the limit as x→a=2024, we get −cot(2a+a)=−cot(a)=−cot(2024). Alternatively, applying L'Hopital's rule, the limit is limx→2024dxd(cosx−cos2024)dxd(sinx−sin2024)=limx→2024−sinxcosx=−sin2024cos2024=−cot2024.