Solveeit Logo

Question

Mathematics Question on Limits

limn1nr=12nrn2+r2lim_{ n \to \infty} \frac{1}{n} \displaystyle \sum_{r = 1}^ {2n} \frac{r}{ \sqrt{ n^2 + r^2}} equals

A

1 + 5\sqrt 5

B

1 - 5\sqrt 5

C

- 1 + 2\sqrt 2

D

1 + 2\sqrt 2

Answer

1 - 5\sqrt 5

Explanation

Solution

Let I = limn1nr=12nrn2+r2=limn1nr=12nrn1+(r/n)2lim_{ n \to \infty} \frac{1}{n} \displaystyle \sum_{r = 1}^ {2n} \frac{r}{ \sqrt{ n^2 + r^2}} = lim_{n \to \infty} \frac{1}{n} \displaystyle \sum_{r = 1}^ {2n} \frac{r}{ n \sqrt{ 1 + (r / n)^2}}
= limn1nr=12nr/n1+(r/n)2lim_{ n \to \infty} \frac{1}{n} \displaystyle \sum_{r = 1}^ {2n} \frac{ r / n}{ \sqrt {1 + ( r / n)^2}}
= 02x1+x2dx=[1+x2]02=51\int \limits_0^2 \frac{x}{\sqrt{ 1 + x^2}} dx = [ \sqrt{ 1 + x^2 }]_0^2 = \sqrt 5 - 1