Solveeit Logo

Question

Mathematics Question on Sum of First n Terms of an AP

limn(121)(n1)+(222)(n2)++((n1)2(n1))(13+23++n3)(12+22++n2)\lim_{n \to \infty} \frac{(1^2 - 1)(n-1) + (2^2 - 2)(n-2) + \ldots + ((n-1)^2 - (n-1))}{(1^3 + 2^3 + \ldots + n^3) - (1^2 + 2^2 + \ldots + n^2)}is equal to:

A

23\frac{2}{3}

B

13\frac{1}{3}

C

34\frac{3}{4}

D

12\frac{1}{2}

Answer

13\frac{1}{3}

Explanation

Solution

limnr=1n1(r2r)(nr)\lim_{n \to \infty} \sum_{r=1}^{n-1} (r^2 - r)(n - r)

=limn(r=1nr3r=1nr2)= \lim_{n \to \infty} \left( \sum_{r=1}^n r^3 - \sum_{r=1}^n r^2 \right)

=limnr=1n1(r3+r2(n+1)nr)= \lim_{n \to \infty} \sum_{r=1}^{n-1} \left( -r^3 + r^2(n + 1) - nr \right)

limn(n(n+1)22n(n+1)(2n+1)6n2(n1)2)\lim_{n \to \infty} \left( \frac{n(n + 1)^2}{2} - \frac{n(n + 1)(2n + 1)}{6} - \frac{n^2(n - 1)}{2} \right)

Simplify further:

limn((n1)n2+(n+1)(n1)n(2n1)n2(n1)6)\lim_{n \to \infty} \left( \frac{(n - 1)n}{2} + \frac{(n + 1)(n - 1)n(2n - 1) - n^2(n - 1)}{6} \right)

limn[n(n+1)2+n(n+1)2+2n+13]\lim_{n \to \infty} \left[ \frac{n(n + 1)}{2} + \frac{n(n + 1)}{2} + \frac{2n + 1}{3} \right]

limnn(n1)2(n(n1)+(n+1)(2n1))\lim_{n \to \infty} \frac{n(n - 1)}{2} \left( -n(n - 1) + (n + 1)(2n - 1) \right)

=limnn(n+1)(3n2+3n4n2)6= \lim_{n \to \infty} \frac{n(n + 1)(3n^2 + 3n - 4n - 2)}{6}

=limn(n1)(3n2+3+2(2n2+n1)6)(n+1)(3n2n2)= \lim_{n \to \infty} \frac{(n - 1)(-3n^2 + 3 + 2(2n^2 + n - 1) - 6)}{(n + 1)(3n^2 - n - 2)}

=limn(n1)(n2+5n8)(n+1)(3n2n2)=13= \lim_{n \to \infty} \frac{(n - 1)(n^2 + 5n - 8)}{(n + 1)(3n^2 - n - 2)} = \frac{1}{3}