Question
Mathematics Question on Sum of First n Terms of an AP
limn→∞(13+23+…+n3)−(12+22+…+n2)(12−1)(n−1)+(22−2)(n−2)+…+((n−1)2−(n−1))is equal to:
A
32
B
31
C
43
D
21
Answer
31
Explanation
Solution
limn→∞∑r=1n−1(r2−r)(n−r)
=limn→∞(∑r=1nr3−∑r=1nr2)
=limn→∞∑r=1n−1(−r3+r2(n+1)−nr)
limn→∞(2n(n+1)2−6n(n+1)(2n+1)−2n2(n−1))
Simplify further:
limn→∞(2(n−1)n+6(n+1)(n−1)n(2n−1)−n2(n−1))
limn→∞[2n(n+1)+2n(n+1)+32n+1]
limn→∞2n(n−1)(−n(n−1)+(n+1)(2n−1))
=limn→∞6n(n+1)(3n2+3n−4n−2)
=limn→∞(n+1)(3n2−n−2)(n−1)(−3n2+3+2(2n2+n−1)−6)
=limn→∞(n+1)(3n2−n−2)(n−1)(n2+5n−8)=31