Solveeit Logo

Question

Mathematics Question on Integration by Partial Fractions

limn12n(111/2n+1122n+1132n+...+112n12n)lim_{n→∞} \frac1{2^n}(\frac1{\sqrt{1-1/2^n}} +\frac1{\sqrt{1-\frac2{2^n}}}+\frac1{\sqrt{1-\frac3{2^n}}}+...+\frac1{\sqrt{1-\frac{2^n-1}{2^n}}}) is equal to

A

12\frac1{2}

B

1

C

2

D

-2

Answer

2

Explanation

Solution

I=limn12n(111/2n+1122n+1132n+...+112n12n)I =lim_{n→∞} \frac1{2^n}(\frac1{\sqrt{1-1/2^n}} +\frac1{\sqrt{1-\frac2{2^n}}}+\frac1{\sqrt{1-\frac3{2^n}}}+...+\frac1{\sqrt{1-\frac{2^n-1}{2^n}}})

Let 2n=t2^n=t and ifn n→∞ then tt→∞

I=limn1t(r=1t=111rt)I= lim_{n→∞} \frac1{t} (\overset{t=1}{\underset{r=1}\sum} \frac1{√1-\frac{r}{t}})

l=01dx1x=01dxxl= ∫_0 ^1 \frac{dx}{√1-x}=∫_0^1 \frac {dx}{\sqrt {x}} 0af(x)dx=0af(ax)dx\bf{∫_0^a f(x)dx=∫_0^a f(a-x)dx }

=[2x12]01=[2x^{\frac1{2}}]^1_0

=2=2