Solveeit Logo

Question

Mathematics Question on Limits

limn(n2(n2+1)(n+1)+n2(n2+4)(n+2)+n2(n2+9)(n+3).....+n2(n2+n2)(n+n))lim _{ n → ∞}\bigg (\frac{n^2}{(n^2+1)(n+1)}+\frac{n^2}{(n^2+4)(n+2)}+\frac{n^2}{(n2+9)(n+3)}.....+ \frac{n^2}{(n^2+n^2)(n+n)}\bigg)is equal to

A

π8+14  loge2\frac{π}{8}+\frac{1}{4} \;log_e2

B

π4+18  loge2\frac{π}{4}+\frac{1}{8}\; log_e2

C

π418  loge2\frac{π}{4}-\frac{1}{8}\; log_e2

D

π8+18  loge2\frac{π}{8}+\frac{1}{8}\; log_e\sqrt2

Answer

π8+14  loge2\frac{π}{8}+\frac{1}{4} \;log_e2

Explanation

Solution

limn(n2(n2+1)(n+1)+n2(n2+4)(n+2)+n2(n2+9)(n+3).....+n2(n2+n2)(n+n))lim _{ n → ∞}\bigg (\frac{n^2}{(n^2+1)(n+1)}+\frac{n^2}{(n^2+4)(n+2)}+\frac{n^2}{(n2+9)(n+3)}.....+ \frac{n^2}{(n^2+n^2)(n+n)}\bigg)

= limnr=1nn2(n2+r2)(n+r)lim _{n → ∞} ∑^n_{ r=1} \frac{n^2}{(n^2+r^2)(n+r)}

= limnr=1n1[1+(rn)2][1+(rn)]lim_{ n → ∞} ∑^n_{ r=1} \frac{1}{\bigg[1+(\frac{r}{n})^2\bigg]\bigg[1+(\frac{r}{n})\bigg]}

= 011(1+x2)(1+x)dx∫^1_0 \frac{1}{(1+x^2)(1+x)}dx

= 1201[11+x(x1)(1+x2)]dx\frac{1}{2} ∫^1_0\bigg [\frac{ 1}{1+x}-\frac{(x-1)}{(1+x^2)}\bigg]dx

= 12[  In(1+x)12  In(1+x2)+tan1x]01\frac{1}{2}\bigg[\;In(1+x)-\frac{1}{2}\;In(1+x^2)+tan^{-1}x\bigg]^1_0

= 12[π4+12  In2]\frac{1}{2}\bigg[\frac{π}{4}+\frac{1}{2}\;In2\bigg]

=π8+14  In2=\frac{π}{8}+\frac{1}{4}\;In2

Hence, the correct option is (A): π8+14  loge2\frac{π}{8}+\frac{1}{4} \;log_e2