Question
Mathematics Question on Limits
limn→∞((n2+1)(n+1)n2+(n2+4)(n+2)n2+(n2+9)(n+3)n2.....+(n2+n2)(n+n)n2)is equal to
A
8π+41loge2
B
4π+81loge2
C
4π−81loge2
D
8π+81loge2
Answer
8π+41loge2
Explanation
Solution
limn→∞((n2+1)(n+1)n2+(n2+4)(n+2)n2+(n2+9)(n+3)n2.....+(n2+n2)(n+n)n2)
= limn→∞∑r=1n(n2+r2)(n+r)n2
= limn→∞∑r=1n[1+(nr)2][1+(nr)]1
= ∫01(1+x2)(1+x)1dx
= 21∫01[1+x1−(1+x2)(x−1)]dx
= 21[In(1+x)−21In(1+x2)+tan−1x]01
= 21[4π+21In2]
=8π+41In2
Hence, the correct option is (A): 8π+41loge2