Solveeit Logo

Question

Mathematics Question on Limits

limx1(logex)1/logx\lim\limits _{x\to 1 } \left(log \,ex\right)^{1/log\,x} is equal

A

e1e^{-1}

B

ee

C

e2e^2

D

00

Answer

ee

Explanation

Solution

limx1(logex)1/logx=limx1[loge+logx]1/logx\displaystyle\lim _{x \rightarrow 1}(\log e x)^{1 / \log x}=\displaystyle\lim _{x \rightarrow 1}[\log e+\log x]^{1 / \log x} =limx1[1+logx]1/logx= \displaystyle\lim _{x \rightarrow 1}[1+\log x]^{1 / \log x} =elimx1logxlogx=e=e^{\displaystyle\lim _{x \rightarrow 1} \frac{\log x}{\log x}}=e