Solveeit Logo

Question

Mathematics Question on Limits

limn \lim\limits_{n \to \infty} \frac{3}{n}\left\\{1+\sqrt{\frac{n}{n+3}}+\sqrt{\frac{n}{n+6}}+\sqrt{\frac{n}{n+9}}+....+\sqrt{\frac{n}{n+3\left(n-1\right)}}\right\\}

A

does not exist

B

is 1

C

is 2

D

is 3

Answer

is 2

Explanation

Solution

limn \lim\limits_{n \to \infty} 3nr=0n111+3(rn)\frac{3}{n} \sum\limits^{n-1}_{r = 0} \sqrt{\frac{1}{1+3\left(\frac{r}{n}\right)}}
=301dx1+3x=2[1+3x]01=2=3 \int\limits^{1}_{ 0} \frac{dx}{\sqrt{1+3x}} = 2\left[\sqrt{1+3x}\right]^{1}_{0} = 2