Solveeit Logo

Question

Question: \(\lim _ { n \rightarrow \infty }\) \(\left[ \left( 1 + \frac { 1 } { n } \right) \left( 1 + \frac ...

limn\lim _ { n \rightarrow \infty } [(1+1n)(1+2n)(1+3n)(1+nn)]1/n\left[ \left( 1 + \frac { 1 } { n } \right) \left( 1 + \frac { 2 } { n } \right) \left( 1 + \frac { 3 } { n } \right) \ldots \left( 1 + \frac { n } { n } \right) \right] ^ { 1 / n } =

A

e4\frac { \mathrm { e } } { 4 }

B

4e\frac { 4 } { \mathrm { e } }

C

2e\frac { 2 } { \mathrm { e } }

D

None of these

Answer

4e\frac { 4 } { \mathrm { e } }

Explanation

Solution

A = limn[(1+1n)(1+2n).(1+nn)]1n\lim _ { n \rightarrow \infty } \left[ \left( 1 + \frac { 1 } { n } \right) \left( 1 + \frac { 2 } { n } \right) \ldots . \left( 1 + \frac { n } { n } \right) \right] ^ { \frac { 1 } { n } }

log A =

= = 011x+1xdx\int _ { 0 } ^ { 1 } \frac { 1 } { x + 1 } x d x

= log2 – = log 2 –

= log 2 – [1 – log 2] = 2 log 2 – 1

log A = log 4 – 1

log A = log (4/e) ̃ A =