Solveeit Logo

Question

Question: Lim 2ˣ (4tan⁻¹(1+2⁻ˣ)-π) is equal to x→∞...

Lim 2ˣ (4tan⁻¹(1+2⁻ˣ)-π) is equal to x→∞

A

1

B

2

C

3

D

4

Answer

2

Explanation

Solution

Let the given limit be LL.

L=limx2x(4tan1(1+2x)π)L = \lim_{x \to \infty} 2^x (4\tan^{-1}(1+2^{-x})-\pi)

Let y=2xy = 2^{-x}. As xx \to \infty, 2x02^{-x} \to 0, so y0y \to 0. Also, 2x=12x=1y2^x = \frac{1}{2^{-x}} = \frac{1}{y}.

Substituting yy into the limit expression, we get:

L=limy01y(4tan1(1+y)π)L = \lim_{y \to 0} \frac{1}{y} (4\tan^{-1}(1+y)-\pi)

L=limy04tan1(1+y)πyL = \lim_{y \to 0} \frac{4\tan^{-1}(1+y)-\pi}{y}

As y0y \to 0, the numerator approaches 4tan1(1+0)π=4tan1(1)π=4(π4)π=ππ=04\tan^{-1}(1+0)-\pi = 4\tan^{-1}(1)-\pi = 4(\frac{\pi}{4})-\pi = \pi-\pi = 0. The denominator approaches 00.

Thus, the limit is of the indeterminate form 00\frac{0}{0}. We can apply L'Hopital's Rule.

Differentiate the numerator and the denominator with respect to yy:

Derivative of the numerator: ddy(4tan1(1+y)π)=411+(1+y)2ddy(1+y)=41+(1+y)2\frac{d}{dy}(4\tan^{-1}(1+y)-\pi) = 4 \cdot \frac{1}{1+(1+y)^2} \cdot \frac{d}{dy}(1+y) = \frac{4}{1+(1+y)^2}.

Derivative of the denominator: ddy(y)=1\frac{d}{dy}(y) = 1.

Applying L'Hopital's Rule:

L=limy041+(1+y)21=limy041+(1+y)2L = \lim_{y \to 0} \frac{\frac{4}{1+(1+y)^2}}{1} = \lim_{y \to 0} \frac{4}{1+(1+y)^2}

Now, substitute y=0y=0 into the expression:

L=41+(1+0)2=41+12=41+1=42=2L = \frac{4}{1+(1+0)^2} = \frac{4}{1+1^2} = \frac{4}{1+1} = \frac{4}{2} = 2

Thus, the value of the limit is 2.

Alternatively, using Taylor series expansion for tan1(1+y)\tan^{-1}(1+y) around y=0y=0:

Let f(y)=tan1(1+y)f(y) = \tan^{-1}(1+y).

f(0)=tan1(1)=π4f(0) = \tan^{-1}(1) = \frac{\pi}{4}.

f(y)=11+(1+y)2f'(y) = \frac{1}{1+(1+y)^2}, so f(0)=11+(1+0)2=12f'(0) = \frac{1}{1+(1+0)^2} = \frac{1}{2}.

The Taylor expansion of f(y)f(y) around y=0y=0 is f(y)=f(0)+f(0)y+O(y2)=π4+12y+O(y2)f(y) = f(0) + f'(0)y + O(y^2) = \frac{\pi}{4} + \frac{1}{2}y + O(y^2).

Substitute this into the limit expression:

L=limy04(π4+12y+O(y2))πyL = \lim_{y \to 0} \frac{4(\frac{\pi}{4} + \frac{1}{2}y + O(y^2)) - \pi}{y}

L=limy0π+2y+O(y2)πyL = \lim_{y \to 0} \frac{\pi + 2y + O(y^2) - \pi}{y}

L=limy02y+O(y2)yL = \lim_{y \to 0} \frac{2y + O(y^2)}{y}

L=limy0(2+O(y2)y)L = \lim_{y \to 0} (2 + \frac{O(y^2)}{y})

L=limy0(2+O(y))L = \lim_{y \to 0} (2 + O(y))

As y0y \to 0, O(y)0O(y) \to 0.

L=2L = 2

Both methods yield the same result.