Solveeit Logo

Question

Physics Question on Wave optics

Light of wavelength 550nm550\, nm falls normally on a slit of width 22.0×105cm22.0 \times 10^{-5} \, cm. The angular position of the second minima from the central maximum will be (in radians) :

A

π12\frac{\pi}{12}

B

π8\frac{\pi}{8}

C

π6\frac{\pi}{6}

D

π4\frac{\pi}{4}

Answer

π6\frac{\pi}{6}

Explanation

Solution

Given: wavelength of light =550nm=550\, nm;
width of slit =22.0×105cm=22.0 \times 10^{-5}\, cm
We know that nλ=dsinθn \lambda=d \sin \theta; where nn is 2 (for second minima), λ\lambda is wavelength, dd is width of slit.
Therefore, sinθ=nλd\sin \theta=\frac{n \lambda}{d}
θ=sin1(nλd)\Rightarrow \theta=\sin ^{-1}\left(\frac{n \lambda}{d}\right)
Substituting the values, we get
θ=sin1(2×550×109m22.0×105cm)\theta=\sin ^{-1}\left(\frac{2 \times 550 \times 10^{-9} m }{22.0 \times 10^{-5} cm }\right)
=sin1(2×550×109m22.0×105×102m)=\sin ^{-1}\left(\frac{2 \times 550 \times 10^{-9} m }{22.0 \times 10^{-5} \times 10^{-2} m }\right)
θ=sin1(12)\theta=\sin ^{-1}\left(\frac{1}{2}\right)
θ=π6\Rightarrow \theta=\frac{\pi}{6}
Thus, angular position of second minima from central maximum will be π/6\pi / 6.