Solveeit Logo

Question

Question: Light of energy E incident on bob of simple pendulum, Find its amplitude...

Light of energy E incident on bob of simple pendulum, Find its amplitude

Answer
  • Exact amplitude:
    θ=cos1(1EmgL)\displaystyle \theta = \cos^{-1}\left(1-\frac{E}{mgL}\right)

  • For small angles:
    θ2EmgL\displaystyle \theta \approx \sqrt{\frac{2E}{mgL}}

Explanation

Solution

The energy EE absorbed by the bob gets converted into gravitational potential energy at the maximum displacement. For a pendulum of length LL and mass mm, if the maximum angular displacement is θ\theta, the vertical height risen is

h=LLcosθ=L(1cosθ).h = L - L\cos\theta = L(1-\cos\theta).

Thus, by energy conservation,

E=mgh=mgL(1cosθ).E = mgh = mgL(1-\cos\theta).

This gives:

cosθ=1EmgL.\cos\theta = 1 - \frac{E}{mgL}.

So, the exact amplitude (angular) is

θ=cos1(1EmgL).\theta = \cos^{-1}\left(1-\frac{E}{mgL}\right).

For small amplitudes, we use the small angle approximation:

cosθ1θ22.\cos\theta \approx 1 - \frac{\theta^2}{2}.

Then,

1θ221EmgLθ22EmgL.1 - \frac{\theta^2}{2} \approx 1 - \frac{E}{mgL} \quad \Longrightarrow \quad \frac{\theta^2}{2} \approx \frac{E}{mgL}.

Thus,

θ2EmgL.\theta \approx \sqrt{\frac{2E}{mgL}}.

Explanation (minimal):

  1. Equate absorbed energy EE to gravitational potential energy mgL(1cosθ)mgL(1-\cos\theta).
  2. Solve for θ\theta exactly: θ=cos1(1EmgL)\theta = \cos^{-1}\left(1-\frac{E}{mgL}\right).
  3. Use small angle approximation to get θ2EmgL\theta \approx \sqrt{\frac{2E}{mgL}}.