Solveeit Logo

Question

Question: Let’s assume the values of \(u,v\) are \[{\tan ^{ - 1}}\left( {\dfrac{{\sqrt {1 + {x^2}} - 1}}{x}} \...

Let’s assume the values of u,vu,v are tan1(1+x21x){\tan ^{ - 1}}\left( {\dfrac{{\sqrt {1 + {x^2}} - 1}}{x}} \right), tan1(x){\tan ^{ - 1}}\left( x \right) . Now choose the value of dudv\dfrac{{du}}{{dv}} from the options given below.
1. 22
2. 11
3. 12\dfrac{1}{2}
4. 1 - 1

Explanation

Solution

There are various ways of solving this problem. Now we want the value of dudv\dfrac{{du}}{{dv}} so let’s try to express the value of u in terms of v to calculate the value of dudv\dfrac{{du}}{{dv}} and then we can easily calculate the value of dudv\dfrac{{du}}{{dv}} by using the trigonometric relations we know.

Complete step-by-step solution:
Given,
u=tan1(1+x21x)u = {\tan ^{ - 1}}\left( {\dfrac{{\sqrt {1 + {x^2}} - 1}}{x}} \right),
v=tan1(x)v = {\tan ^{ - 1}}\left( x \right)
On applying tan\tan a function on both sides we get
tanv=x\tan v = x.
Now, let’s substitute the value xx in uu. We get,
u=tan1(1+tan2v1tanv)u = {\tan ^{ - 1}}\left( {\dfrac{{\sqrt {1 + {{\tan }^2}v} - 1}}{{\tan v}}} \right)
We know that
tan(v2)=1+tan2v1tanv\tan \left( {\dfrac{v}{2}} \right) = \dfrac{{\sqrt {1 + {{\tan }^2}v} - 1}}{{\tan v}}
Now let’s replace the value of 1+tan2v1tanv\dfrac{{\sqrt {1 + {{\tan }^2}v} - 1}}{{\tan v}} in uu into tan(v2)\tan \left( {\dfrac{v}{2}} \right).
Therefore,u=tan1(tan(v2))u = {\tan ^{ - 1}}\left( {\tan \left( {\dfrac{v}{2}} \right)} \right)
We know that the value of tan1(tan(x)){\tan ^{ - 1}}\left( {\tan \left( x \right)} \right) is nothing but xx. Since tan\tan and tan1{\tan ^{ - 1}} are inverse functions.
So, u=v2u = \dfrac{v}{2}
Now, let’s calculate the value of dudv\dfrac{{du}}{{dv}},
By substituting the value of uu in terms of vv we get dudv=ddv(v2)\dfrac{{du}}{{dv}} = \dfrac{d}{{dv}}\left( {\dfrac{v}{2}} \right),
dudv=12ddv(v)\Rightarrow \dfrac{{du}}{{dv}} = \dfrac{1}{2}\dfrac{d}{{dv}}\left( v \right)
dudv=12dvdv\Rightarrow \dfrac{{du}}{{dv}} = \dfrac{1}{2}\dfrac{{dv}}{{dv}}
dudv=12\Rightarrow \dfrac{{du}}{{dv}} = \dfrac{1}{2}
So, the required value dudv\dfrac{{du}}{{dv}} is 12\dfrac{1}{2}.
The correct option is 3.
Additional information:
In the above solution, we have used the formula of tan(v2)\tan \left( {\dfrac{v}{2}} \right).
Now let’s prove it.
The formula is
tan(v2)=1+tan2v1tanv\tan \left( {\dfrac{v}{2}} \right) = \dfrac{{\sqrt {1 + {{\tan }^2}v} - 1}}{{\tan v}},
RHS=1+tan2v1tanvRHS = \dfrac{{\sqrt {1 + {{\tan }^2}v} - 1}}{{\tan v}},
We know by the basic trigonometric equations sec2θtan2θ=1{\sec ^2}\theta - {\tan ^2}\theta = 1 \Leftrightarrow sec2θ=1+tan2θ{\sec ^2}\theta = 1 + {\tan ^2}\theta
Therefore,
RHS=sec2v1tanv\Rightarrow RHS = \dfrac{{\sqrt {{{\sec }^2}v} - 1}}{{\tan v}},
RHS=secv1tanv\Rightarrow RHS = \dfrac{{\sec v - 1}}{{\tan v}},
On multiplying both numerator and denominator by cosv\cos v, we get
RHS=1cosvsinv\Rightarrow RHS = \dfrac{{1 - \cos v}}{{\sin v}},
We know that,
1cosv=2sin2(v2),sinv=2sin(v2)cos(v2)1 - \cos v = 2{\sin ^2}\left( {\dfrac{v}{2}} \right),\sin v = 2\sin \left( {\dfrac{v}{2}} \right)\cos \left( {\dfrac{v}{2}} \right),
On substituting both values to RHS, we get
RHS=2sin2(v2)2sin(v2)cos(v2)\Rightarrow RHS = \dfrac{{2{{\sin }^2}\left( {\dfrac{v}{2}} \right)}}{{2\sin \left( {\dfrac{v}{2}} \right)\cos \left( {\dfrac{v}{2}} \right)}},
On further simplifying the above equation we get,
RHS=sin(v2)cos(v2)\Rightarrow RHS = \dfrac{{\sin \left( {\dfrac{v}{2}} \right)}}{{\cos \left( {\dfrac{v}{2}} \right)}},
\Rightarrow RHS=tan(v2)RHS = \tan \left( {\dfrac{v}{2}} \right)
Therefore, RHS=LHSRHS = LHS.

Note: There are many ways of solving this problem. The other way of solving this problem is to find the values of du,dvdu,dv with respect to xx and dividing the resulting du,dvdu,dv values to obtain the answer. So finally, the required answer for the given question is 12\dfrac{1}{2}.