Solveeit Logo

Question

Question: Let\(\omega = - \frac{1}{2} + i\frac{\sqrt{3}}{2}\). Then the value of the determinant \(\left| \beg...

Letω=12+i32\omega = - \frac{1}{2} + i\frac{\sqrt{3}}{2}. Then the value of the determinant 11111ω2ω21ω2ω4\left| \begin{matrix} 1 & 1 & 1 \\ 1 & - 1 - \omega^{2} & \omega^{2} \\ 1 & \omega^{2} & \omega^{4} \end{matrix} \right|is.

A

3ω3\omega

B

3ω(ω1)3\omega(\omega - 1)

C

3ω23\omega^{2}

D

3ω(1ω)3\omega(1 - \omega)

Answer

3ω(ω1)3\omega(\omega - 1)

Explanation

Solution

Δ=31101ω2ω20ω2ω\Delta = \left| \begin{matrix} 3 & 1 & 1 \\ 0 & - 1 - \omega^{2} & \omega^{2} \\ 0 & \omega^{2} & \omega \end{matrix} \right| (C1C1+C2+C3)(C_{1} \rightarrow C_{1} + C_{2} + C_{3})

(1+ω+ω2=0)(\because 1 + \omega + \omega^{2} = 0)

=3[ω.ωω4]=3(ω2ω)= 3\lbrack\omega.\omega - \omega^{4}\rbrack = 3(\omega^{2} - \omega) =3ω(ω1)= 3\omega(\omega - 1).