Solveeit Logo

Question

Question: Let\(\left| \begin{matrix} 6i & - 3i & 1 \\ 4 & 3i & - 1 \\ 20 & 3 & i \end{matrix} \right| = x + iy...

Let6i3i143i1203i=x+iy\left| \begin{matrix} 6i & - 3i & 1 \\ 4 & 3i & - 1 \\ 20 & 3 & i \end{matrix} \right| = x + iy, then.

A

x=3,y=1x = 3,y = 1

B

x=0,y=0x = 0,y = 0

C

x=0,y=3x = 0,y = 3

D

x=1,y=3x = 1,y = 3

Answer

x=0,y=0x = 0,y = 0

Explanation

Solution

(a+b+c)22bc2c2bb2c+ab0c20a+bc\mathbf{(a + b + c}\mathbf{)}^{\mathbf{2}}\left| \begin{matrix} \mathbf{2bc} & \mathbf{-}\mathbf{2c} & \mathbf{-}\mathbf{2b} \\ \mathbf{b}^{\mathbf{2}} & \mathbf{c + a}\mathbf{-}\mathbf{b} & \mathbf{0} \\ \mathbf{c}^{\mathbf{2}} & \mathbf{0} & \mathbf{a + b}\mathbf{-}\mathbf{c} \end{matrix} \right|

6i(3+3)+3i(4i+20)+1(1260i)=x+iy\Rightarrow 6i( - 3 + 3) + 3i(4i + 20) + 1(12 - 60i) = x + iy

(C1C1+C2+C3)\Rightarrow (C_{1} \rightarrow C_{1} + C_{2} + C_{3}) \Rightarrow x=0,y=0x = 0,y = 0.