Question
Question: Let\(\left| \begin{matrix} 6i & - 3i & 1 \\ 4 & 3i & - 1 \\ 20 & 3 & i \end{matrix} \right| = x + iy...
Let6i420−3i3i31−1i=x+iy, then.
A
x=3,y=1
B
x=0,y=0
C
x=0,y=3
D
x=1,y=3
Answer
x=0,y=0
Explanation
Solution
(a+b+c)22bcb2c2−2cc+a−b0−2b0a+b−c
⇒6i(−3+3)+3i(4i+20)+1(12−60i)=x+iy
⇒(C1→C1+C2+C3) ⇒ x=0,y=0.