Solveeit Logo

Question

Question: Let\(f(x) = \left\{ \begin{matrix} 3 - x0 \leq x < 1 \\ x^{2} + lnbx \geq 1 \end{matrix} \right.\ \)...

Letf(x)={3x0x<1x2+lnbx1 f(x) = \left\{ \begin{matrix} 3 - x0 \leq x < 1 \\ x^{2} + lnbx \geq 1 \end{matrix} \right.\ . Then the set of values of b for which f(x) has the least value at x = 1, is given by

A

(0, 1]

B

(–e, 0]

C

(–∞, 0)

D

None of these

Answer

(–∞, 0)

Explanation

Solution

Limx1f(x)f(1)21+lnb\underset{x \rightarrow 1^{-}}{Lim}f(x) \geq f(1) \Rightarrow 2 \geq 1 + \ln b lnb1be\Rightarrow \ln b \leq 1 \Rightarrow b \leq e