Solveeit Logo

Question

Question: Let\(f(\alpha) = \begin{bmatrix} \cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 &...

Letf(α)=[cosαsinα0sinαcosα0001],f(\alpha) = \begin{bmatrix} \cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}, where αR\alpha \in R,then

[f(α)]1\lbrack f(\alpha)\rbrack^{- 1}is equal to

A

f(α)f( - \alpha)

B

f(α1)f(\alpha^{- 1})

C

f(2α)f(2\alpha)

D

None

Answer

f(α)f( - \alpha)

Explanation

Solution

f(α)=cosαsinα0sinαcosα0001=1|f(\alpha)| = \left| \begin{matrix} \cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1 \end{matrix} \right| = 1 , adj of

\cos\alpha & \sin\alpha & 0 \\ - \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1 \end{matrix} \right|$$ $\lbrack f(\alpha)\rbrack^{- 1} = \left| \begin{matrix} \cos\alpha & \sin\alpha & 0 \\ - \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1 \end{matrix} \right|$ ......(i) and $f( - \alpha) = \left| \begin{matrix} \cos\alpha & \sin\alpha & 0 \\ - \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1 \end{matrix} \right|$......(ii) From (i) and (ii), $\left\lbrack f(\alpha) \right\rbrack^{- 1} = f\lbrack - \alpha\rbrack$