Question
Question: Let\(f(\alpha) = \begin{bmatrix} \cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 &...
Letf(α)=cosαsinα0−sinαcosα0001, where α∈R,then
[f(α)]−1is equal to
A
f(−α)
B
f(α−1)
C
f(2α)
D
None
Answer
f(−α)
Explanation
Solution
∣f(α)∣=cosαsinα0−sinαcosα0001=1 , adj of
\cos\alpha & \sin\alpha & 0 \\ - \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1 \end{matrix} \right|$$ $\lbrack f(\alpha)\rbrack^{- 1} = \left| \begin{matrix} \cos\alpha & \sin\alpha & 0 \\ - \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1 \end{matrix} \right|$ ......(i) and $f( - \alpha) = \left| \begin{matrix} \cos\alpha & \sin\alpha & 0 \\ - \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1 \end{matrix} \right|$......(ii) From (i) and (ii), $\left\lbrack f(\alpha) \right\rbrack^{- 1} = f\lbrack - \alpha\rbrack$