Solveeit Logo

Question

Mathematics Question on Conic sections

LetC be the circle with centre (0, 0)and radius 3 units. The equation of the locus of the mid points of the chords of the circle C that subtend an angle of 2π3\frac{2 \pi}{3} at its centre, is :

A

x2+y2=1x^{2}+y^{2}=1

B

x2+y2=274x^{2}+y^{2}=\frac{27}{4}

C

x2+y2=94x^{2}+y^{2}=\frac{9}{4}

D

x2+y2=32x^{2}+y^{2}=\frac{3}{2}

Answer

x2+y2=94x^{2}+y^{2}=\frac{9}{4}

Explanation

Solution

Let the co-ordinates of a point P be (h, k) which is mid point of the chord AB. op=(h0)2+(k0)2op=\sqrt{\left(h-0\right)^{2}+\left(k-0\right)^{2}} =h2+k2=\sqrt{h^{2}+k^{2}} Now in ΔOPA\Delta OPA, cosπ3=OPOAcos \frac{\pi}{3}=\frac{OP}{OA} 12=h2+k23\Rightarrow\, \frac{1}{2}=\frac{\sqrt{h^{2}+k^{2}}}{3} h2+k2=(32)2\Rightarrow\, h^{2}+k^{2}=\left(\frac{3}{2}\right)^{2} h2+k2=94\Rightarrow\, h^{2}+k^{2}=\frac{9}{4} Thus the required locus is x2+y2=94x^{2}+y^{2}=\frac{9}{4}