Question
Question: Let, alpha and beta be two roots of the equation x^2 +2x+2=0,then (alpha)^15 +(beta)^15 is equal to?...
Let, alpha and beta be two roots of the equation x^2 +2x+2=0,then (alpha)^15 +(beta)^15 is equal to?
-256
256
0
128
-256
Solution
The given quadratic equation is x2+2x+2=0. The roots are found using the quadratic formula x=2a−b±b2−4ac. For this equation, a=1, b=2, c=2. x=2(1)−2±22−4(1)(2)=2−2±4−8=2−2±−4=2−2±2i=−1±i. Let the roots be α=−1+i and β=−1−i.
We need to find α15+β15.
Method 1: Using Polar Form and De Moivre's Theorem
Convert the roots to polar form z=r(cosθ+isinθ)=reiθ.
For α=−1+i: Magnitude r=∣α∣=(−1)2+12=2. The argument θ is in the second quadrant. tanθ=−11=−1. The principal argument is θ=43π. So, α=2(cos(43π)+isin(43π))=2ei43π.
For β=−1−i: Magnitude r=∣β∣=(−1)2+(−1)2=2. The argument θ is in the third quadrant. tanθ=−1−1=1. The principal argument is θ=−43π. So, β=2(cos(−43π)+isin(−43π))=2e−i43π.
Applying De Moivre's theorem: α15=(2)15(cos(15×43π)+isin(15×43π))=215/2(cos(445π)+isin(445π)). Simplify the angle: 445π=11π+4π. cos(445π)=cos(11π+4π)=−cos(4π)=−21. sin(445π)=sin(11π+4π)=−sin(4π)=−21. Also, 215/2=27⋅21/2=1282. So, α15=1282(−21−i21)=−128(1+i).
For β15: β15=(2)15(cos(15×−43π)+isin(15×−43π))=215/2(cos(−445π)+isin(−445π)). cos(−445π)=cos(445π)=−21. sin(−445π)=−sin(445π)=21. So, β15=1282(−21+i21)=128(−1+i).
Summing them: α15+β15=−128(1+i)+128(−1+i)=(−128−128i)+(−128+128i)=−256.
Method 3: Using Conjugate Property Since β=−1−i is the complex conjugate of α=−1+i, we have β=αˉ. Therefore, β15=(αˉ)15=α15. So, α15+β15=α15+α15=2Re(α15). From Method 1, α15=−128−128i. The real part is Re(α15)=−128. Thus, α15+β15=2×(−128)=−256.