Solveeit Logo

Question

Question: Let\(A = \lbrack a_{ij}\rbrack_{n \times n}\)be a square matrix and let \(c_{ij}\)be cofactor of \(a...

LetA=[aij]n×nA = \lbrack a_{ij}\rbrack_{n \times n}be a square matrix and let cijc_{ij}be cofactor of aija_{ij}in A. IfC=[cij]C = \lbrack c_{ij}\rbrack, then.

A

C=A|C| = |A|

B

C=An1|C| = |A|^{n - 1}

C

C=An2|C| = |A|^{n - 2}

D

None of these

Answer

C=An1|C| = |A|^{n - 1}

Explanation

Solution

It is a fundamental concept.