Solveeit Logo

Question

Question: Let λ=0 be a real number. Let α,β be the roots of the equation 14x^2−31x+3λ=0 and α,γ be the roots ...

Let λ=0 be a real number. Let α,β be the roots of the equation 14x^2−31x+3λ=0 and α,γ be the roots of the equation 35x^2−53x+4λ=0. Then 3α β and 4α γ are the roots of the equation

A

7x2−245x+250=0

B

49x2−245x+250=0

C

49x2+245x+250=0

D

7x2+245x−250=0

Answer

49x2−245x+250=0

Explanation

Solution

Let the given equations be:

  1. 14x231x+3λ=014x^2 - 31x + 3λ = 0 with roots α\alpha and β\beta.
  2. 35x253x+4λ=035x^2 - 53x + 4λ = 0 with roots α\alpha and γ\gamma.

Since α\alpha is a common root, it satisfies both equations:

14α231α+3λ=014\alpha^2 - 31\alpha + 3\lambda = 0 (3)

35α253α+4λ=035\alpha^2 - 53\alpha + 4\lambda = 0 (4)

Eliminate λ\lambda from (3) and (4). Multiply (3) by 4 and (4) by 3:

56α2124α+12λ=056\alpha^2 - 124\alpha + 12\lambda = 0

105α2159α+12λ=0105\alpha^2 - 159\alpha + 12\lambda = 0

Subtracting the first from the second:

(105α2159α+12λ)(56α2124α+12λ)=0(105\alpha^2 - 159\alpha + 12\lambda) - (56\alpha^2 - 124\alpha + 12\lambda) = 0

49α235α=049\alpha^2 - 35\alpha = 0

7α(7α5)=07\alpha(7\alpha - 5) = 0

From equation (1), the product of roots is αβ=3λ14\alpha\beta = \frac{3\lambda}{14}.

From equation (2), the product of roots is αγ=4λ35\alpha\gamma = \frac{4\lambda}{35}.

If α=0\alpha = 0, then 3λ/14=0    λ=03\lambda/14 = 0 \implies \lambda = 0 and 4λ/35=0    λ=04\lambda/35 = 0 \implies \lambda = 0. The question states λ0\lambda \neq 0 (implied by the similar question context). Thus α0\alpha \neq 0.

So, 7α5=0    α=577\alpha - 5 = 0 \implies \alpha = \frac{5}{7}.

Substitute α=57\alpha = \frac{5}{7} into equation (3):

14(57)231(57)+3λ=014(\frac{5}{7})^2 - 31(\frac{5}{7}) + 3\lambda = 0

14(2549)1557+3λ=014(\frac{25}{49}) - \frac{155}{7} + 3\lambda = 0

2×2571557+3λ=0\frac{2 \times 25}{7} - \frac{155}{7} + 3\lambda = 0

5071557+3λ=0\frac{50}{7} - \frac{155}{7} + 3\lambda = 0

1057+3λ=0-\frac{105}{7} + 3\lambda = 0

15+3λ=0    3λ=15    λ=5-15 + 3\lambda = 0 \implies 3\lambda = 15 \implies \lambda = 5.

Now find the values of β\beta and γ\gamma.

From equation (1), αβ=3λ14\alpha\beta = \frac{3\lambda}{14}. Substitute α=57\alpha = \frac{5}{7} and λ=5\lambda = 5:

57β=3×514=1514\frac{5}{7}\beta = \frac{3 \times 5}{14} = \frac{15}{14}

β=1514×75=32\beta = \frac{15}{14} \times \frac{7}{5} = \frac{3}{2}.

From equation (2), αγ=4λ35\alpha\gamma = \frac{4\lambda}{35}. Substitute α=57\alpha = \frac{5}{7} and λ=5\lambda = 5:

57γ=4×535=2035=47\frac{5}{7}\gamma = \frac{4 \times 5}{35} = \frac{20}{35} = \frac{4}{7}

γ=47×75=45\gamma = \frac{4}{7} \times \frac{7}{5} = \frac{4}{5}.

The question asks for the equation whose roots are 3αβ\frac{3\alpha}{\beta} and 4αγ\frac{4\alpha}{\gamma}.

Let the new roots be r1=3αβr_1 = \frac{3\alpha}{\beta} and r2=4αγr_2 = \frac{4\alpha}{\gamma}.

r1=3×(5/7)3/2=15/73/2=157×23=57×2=107r_1 = \frac{3 \times (5/7)}{3/2} = \frac{15/7}{3/2} = \frac{15}{7} \times \frac{2}{3} = \frac{5}{7} \times 2 = \frac{10}{7}.

r2=4×(5/7)4/5=20/74/5=207×54=57×5=257r_2 = \frac{4 \times (5/7)}{4/5} = \frac{20/7}{4/5} = \frac{20}{7} \times \frac{5}{4} = \frac{5}{7} \times 5 = \frac{25}{7}.

The sum of the new roots is S=r1+r2=107+257=357=5S = r_1 + r_2 = \frac{10}{7} + \frac{25}{7} = \frac{35}{7} = 5.

The product of the new roots is P=r1×r2=107×257=25049P = r_1 \times r_2 = \frac{10}{7} \times \frac{25}{7} = \frac{250}{49}.

The quadratic equation with roots r1r_1 and r2r_2 is x2Sx+P=0x^2 - Sx + P = 0.

x25x+25049=0x^2 - 5x + \frac{250}{49} = 0.

To obtain integer coefficients, multiply the equation by 49:

49x249×5x+49×25049=049x^2 - 49 \times 5x + 49 \times \frac{250}{49} = 0

49x2245x+250=049x^2 - 245x + 250 = 0.