Solveeit Logo

Question

Question: Let\(0 < x < \frac{\pi}{4}.\) Then \(\sec 2x - \tan 2x =\)...

Let0<x<π4.0 < x < \frac{\pi}{4}. Then sec2xtan2x=\sec 2x - \tan 2x =

A

tan(xπ4)\tan\left( x - \frac{\pi}{4} \right)

B

tan(π4x)\tan\left( \frac{\pi}{4} - x \right)

C

tan(x+π4)\tan\left( x + \frac{\pi}{4} \right)

D

tan2(x+π4)\tan^{2}\left( x + \frac{\pi}{4} \right)

Answer

tan(π4x)\tan\left( \frac{\pi}{4} - x \right)

Explanation

Solution

sec2xtan2x=1sin2xcos2x\sec 2x - \tan 2x = \frac{1 - \sin 2x}{\cos 2x}

=(cosxsinx)2(cos2xsin2x)=cosxsinxcosx+sinx=1tanx1+tanx= \frac{(\cos x - \sin x)^{2}}{(\cos^{2}x - \sin^{2}x)} = \frac{\cos x - \sin x}{\cos x + \sin x} = \frac{1 - \tan x}{1 + \tan x}

=tanπ4tanx1+tan(π4)sinx=tan(π4x)= \frac{\tan\frac{\pi}{4} - \tan x}{1 + \tan\left( \frac{\pi}{4} \right)\sin x} = \tan\left( \frac{\pi}{4} - x \right).