Solveeit Logo

Question

Question: Let Z<sub>i</sub> = r<sub>i</sub> (cos q<sub>i</sub> + i sinq<sub>i</sub>), i = 1, 2, 3 and \(\frac{...

Let Zi = ri (cos qi + i sinqi), i = 1, 2, 3 and 1Z1\frac{1}{Z_{1}}+ 1Z2\frac{1}{Z_{2}}+ 1Z3\frac{1}{Z_{3}}= 0. Consider the DABC formed by cos2θ2+isin2θ2Z2\frac{\cos 2\theta_{2} + i\sin 2\theta_{2}}{Z_{2}}, cos2θ3+isin2θ3Z3\frac{\cos 2\theta_{3} + i\sin 2\theta_{3}}{Z_{3}}.

Then the complex number 0 lies

A

On the side BC

B

Outside the triangle

C

Inside the triangle

D

On the side CA

Answer

Inside the triangle

Explanation

Solution

Sol. 1Z1\frac{1}{Z_{1}}+ 1Z2\frac{1}{Z_{2}}+ 1Z3\frac{1}{Z_{3}}= 0

Ž 1r1(cosθ1+isinθ1)\sum_{}^{}\frac{1}{r_{1}(\cos\theta_{1} + ⥂ i\sin\theta_{1})}= 0

Ž cosθ1isinθ1r1\sum_{}^{}\frac{\cos\theta_{1} - i\sin\theta_{1}}{r_{1}}= 0

Ž cosθ1+isinθ1r1\sum_{}^{}\frac{\cos\theta_{1} + i\sin\theta_{1}}{r_{1}}= 0

Ž (cosθ1+isinθ1)2r1(cosθ1+isinθ1)\sum_{}^{}\frac{(\cos\theta_{1} + i\sin\theta_{1})^{2}}{r_{1}(\cos\theta_{1} + i\sin\theta_{1})}= 0

Ž cos2θ1+isin2θ1Z1\sum_{}^{}\frac{\cos 2\theta_{1} + i\sin 2\theta_{1}}{Z_{1}}= 0

Ž 13\frac { 1 } { 3 } (cos2θ1+isin2θ1)Z1\frac{(\cos 2\theta_{1} + i\sin 2\theta_{1})}{Z_{1}}= 0

Ž the centroid of the D ABC is the origin

Ž origin lies inside the D.