Question
Question: Let Z<sub>i</sub> = r<sub>i</sub> (cos q<sub>i</sub> + i sinq<sub>i</sub>), i = 1, 2, 3 and \(\frac{...
Let Zi = ri (cos qi + i sinqi), i = 1, 2, 3 and Z11+ Z21+ Z31= 0. Consider the DABC formed by Z2cos2θ2+isin2θ2, Z3cos2θ3+isin2θ3.
Then the complex number 0 lies
A
On the side BC
B
Outside the triangle
C
Inside the triangle
D
On the side CA
Answer
Inside the triangle
Explanation
Solution
Sol. Z11+ Z21+ Z31= 0
Ž ∑r1(cosθ1+⥂isinθ1)1= 0
Ž ∑r1cosθ1−isinθ1= 0
Ž ∑r1cosθ1+isinθ1= 0
Ž ∑r1(cosθ1+isinθ1)(cosθ1+isinθ1)2= 0
Ž ∑Z1cos2θ1+isin2θ1= 0
Ž 31 Z1(cos2θ1+isin2θ1)= 0
Ž the centroid of the D ABC is the origin
Ž origin lies inside the D.