Solveeit Logo

Question

Question: Let z<sub>1</sub> and z<sub>2</sub> be two non-zero complex numbers such that \(\frac{z_{1}}{z_{2}}\...

Let z1 and z2 be two non-zero complex numbers such that z1z2\frac{z_{1}}{z_{2}}+ z2z1\frac{z_{2}}{z_{1}} = 1, then the origin and points represented by z1 and z2

A

Lie on a straight line

B

Form a right triangle

C

Form an equilateral triangle

D

None of these

Answer

Form an equilateral triangle

Explanation

Solution

Sol. Let z = z1/z2, then z + 1/z = 1 Ž z2 – z + 1 = 0

Ž z = 1±3i2\frac{1 \pm \sqrt{3}i}{2} Ž z1z2\frac{z_{1}}{z_{2}} = 1±3i2\frac{1 \pm \sqrt{3}i}{2}

If z1 and z2 are represented by A and B respectively and O be the origin, then

OAOB\frac{OA}{OB}= z1z2\frac{|z_{1}|}{|z_{2}|} = 1±3i2\left| \frac{1 \pm \sqrt{3}i}{2} \right| = 14+34\sqrt{\frac{1}{4} + \frac{3}{4}}= 1

Ž OA = OB

Also, ABOB\frac{AB}{OB}=z2z1z2\frac{|z_{2} - z_{1}|}{|z_{2}|}=1z1z2\left| 1 - \frac{z_{1}}{z_{2}} \right|

=1(12±32i)\left| 1 - \left( \frac{1}{2} \pm \frac{\sqrt{3}}{2}i \right) \right| = 1232i\left| \frac{1}{2} \mp \frac{\sqrt{3}}{2}i \right|

=14+34\sqrt{\frac{1}{4} + \frac{3}{4}} = 1

Ž AB = OB

Thus, OA = OB = AB.

\ DOAB is an equilateral triangle.