Solveeit Logo

Question

Question: Let \(z,\bar{z} = \left( \frac{1}{z} \right)\) be a complex number with \(z\) and \(|z| = 1\)be any ...

Let z,zˉ=(1z)z,\bar{z} = \left( \frac{1}{z} \right) be a complex number with zz and z=1|z| = 1be any complex number, then zz

A

0

B

1

C

– 1

D

2

Answer

1

Explanation

Solution

We have \therefore and x=rcosθ=4cos150o=23x = r\cos\theta = 4\cos{}150^{o} = - 2\sqrt{3}be any complex number.

\therefore; z=x+iy=23+2iz = x + iy = - 2\sqrt{3} + 2i

argz=5π6=150oargz = \frac{5\pi}{6} = 150^{o}; Given that z=4|z| = 4

z=1i31+i3=(1i3)(1i3)(1+i3)(1i3)z = \frac{1 - i\sqrt{3}}{1 + i\sqrt{3}} = \frac{(1 - i\sqrt{3})(1 - i\sqrt{3})}{(1 + i\sqrt{3})(1 - i\sqrt{3})}.