Question
Question: Let \(Z_{k}(k = 0,1,2,...............6)\) be the roots of the equation \((z + 1)^{7} + z^{7} = 0\), ...
Let Zk(k=0,1,2,...............6) be the roots of the equation (z+1)7+z7=0, then ∑k=06Re(zk) is equal to
A
3 - 2i
B
0
C
−27
D
3+2i
Answer
−27
Explanation
Solution
Sol. Let zk=xk+iyk, we have (zk+1)7+z7k=0
⇒ (zk+1)7=−z7k
⇒ ∣zk+1∣7+∣zk∣7
⇒ ∣zk+1∣=∣zk∣
⇒ ∣xk+iyk+1∣2=∣xk+iyk∣2
⇒ (xk+1)2+yk2=x2k+y2k
⇒ 2xk+1=0 or xk=−21
Thus, ∑k=06Re(zk)=∑k=06xk=−27