Solveeit Logo

Question

Question: Let \(z_{1},z_{2},z_{3}\) be three vertices of an equilateral triangle circumscribing the circle \(|...

Let z1,z2,z3z_{1},z_{2},z_{3} be three vertices of an equilateral triangle circumscribing the circle z=12.|z| = \frac{1}{2}. If z1=12+3i2z_{1} = \frac{1}{2} + \frac{\sqrt{3}i}{2} and z1,z2,z3z_{1},z_{2},z_{3} are in anticlockwise sense then z2z_{2} is

A

1+3i1 + \sqrt{3}i

B

131 - \sqrt{3}

C

1

D

– 1

Answer

– 1

Explanation

Solution

Sol. z2=z1ei2π/3=(12+32i)z_{2} = z_{1}e^{i2\pi/3} = \left( \frac{1}{2} + \frac{\sqrt{3}}{2}i \right) (cos2π3+isin2π3)\left( \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3} \right)

=(12+32i)(12+32i)\mathbf{=}\left( \frac{\mathbf{1}}{\mathbf{2}}\mathbf{+}\frac{\sqrt{\mathbf{3}}}{\mathbf{2}}\mathbf{i} \right)\left( \frac{\mathbf{- 1}}{\mathbf{2}}\mathbf{+}\frac{\sqrt{\mathbf{3}}}{\mathbf{2}}\mathbf{i} \right) =3414=1.\mathbf{=}\frac{\mathbf{-}\mathbf{3}}{\mathbf{4}}\mathbf{-}\frac{\mathbf{1}}{\mathbf{4}}\mathbf{=}\mathbf{-}\mathbf{1.}