Solveeit Logo

Question

Question: Let \[z = x + iy\] be a complex number where \[x\] and \[y\] are integers. Then the area of the rect...

Let z=x+iyz = x + iy be a complex number where xx and yy are integers. Then the area of the rectangle whose vertices are the roots of the equation zˉz3+zzˉ3=350\bar z{z^3} + z{\bar z^3} = 350 is
A. 48
B. 32
C. 40
D. 80

Explanation

Solution

Try to take the common terms and apply the formula zˉz=zzˉ=z2\bar zz = z\bar z = {\left| z \right|^2} to reduce the given equation. Then substitute the value of z&zˉz\& \bar z to find the equations in terms of x&yx\& y. Solve those obtained equations to get the vertices of the rectangle and then find its equation to get the final answer.

Complete step-by-step answer :
Given that z=x+iyz = x + iy be a complex number where xx and yy are integers. So, we have zˉ=xiy\bar z = x - iy.
Also given that zˉz3+zzˉ3=350\bar z{z^3} + z{\bar z^3} = 350.
We know that for a complex number zˉz=zzˉ=z2\bar zz = z\bar z = {\left| z \right|^2}. By using this formula, we have

(zˉz)z2+(zzˉ)z2=350 (zˉz)z2+(zzˉ)zˉ2=350 z2z2+z2zˉ2=350 z2(z2+zˉ2)=350  \Rightarrow \left( {\bar zz} \right){z^2} + \left( {z\bar z} \right){z^2} = 350 \\\ \Rightarrow \left( {\bar zz} \right){z^2} + \left( {z\bar z} \right){{\bar z}^2} = 350 \\\ \Rightarrow {\left| z \right|^2}{z^2} + {\left| z \right|^2}{{\bar z}^2} = 350 \\\ \Rightarrow {\left| z \right|^2}\left( {{z^2} + {{\bar z}^2}} \right) = 350 \\\

Substituting z=x+iyz = x + iy and zˉ=xiy\bar z = x - iy we have

x+iy2[(x+iy)2+(xiy)2]=350 (x2+y2)2[(x+iy)2+(xiy)2]=350 [z=a+ib=a2+b2] (x2+y2)[(x2+2xiy+i2y2)+(x2xiy+i2y2)]=350 (x2+y2)(x2+x2+2xiy2xiyy2y2)=350 [i2=1] (x2+y2)(2x22y2)=350 (x2+y2)(x2y2)2=350 (x2+y2)(x2y2)=3502=175  \Rightarrow {\left| {x + iy} \right|^2}\left[ {{{\left( {x + iy} \right)}^2} + {{\left( {x - iy} \right)}^2}} \right] = 350 \\\ \Rightarrow {\left( {\sqrt {{x^2} + {y^2}} } \right)^2}\left[ {{{\left( {x + iy} \right)}^2} + {{\left( {x - iy} \right)}^2}} \right] = 350\,{\text{ }}\left[ {\because \left| z \right| = \left| {a + ib} \right| = \sqrt {{a^2} + {b^2}} } \right] \\\ \Rightarrow \left( {{x^2} + {y^2}} \right)\left[ {\left( {{x^2} + 2xiy + {i^2}{y^2}} \right) + \left( {x - 2xiy + {i^2}{y^2}} \right)} \right] = 350 \\\ \Rightarrow \left( {{x^2} + {y^2}} \right)\left( {{x^2} + {x^2} + 2xiy - 2xiy - {y^2} - {y^2}} \right) = 350{\text{ }}\left[ {\because {i^2} = - 1} \right] \\\ \Rightarrow \left( {{x^2} + {y^2}} \right)\left( {2{x^2} - 2{y^2}} \right) = 350 \\\ \Rightarrow \left( {{x^2} + {y^2}} \right)\left( {{x^2} - {y^2}} \right)2 = 350 \\\ \Rightarrow \left( {{x^2} + {y^2}} \right)\left( {{x^2} - {y^2}} \right) = \dfrac{{350}}{2} = 175 \\\

Since, xx and yy are integers we can have two possible ways.
(x2+y2)=25&(x2y2)=7\left( {{x^2} + {y^2}} \right) = 25\& \left( {{x^2} - {y^2}} \right) = 7 or (x2+y2)=35&(x2y2)=5\left( {{x^2} + {y^2}} \right) = 35\& \left( {{x^2} - {y^2}} \right) = 5
Now consider, (x2+y2)=25&(x2y2)=7\left( {{x^2} + {y^2}} \right) = 25\& \left( {{x^2} - {y^2}} \right) = 7. Adding both the equations, we have

(x2+y2)+(x2y2)=25+7 x2+x2+y2y2=32 2x2=32 x2=322=16 x=16=±4...............(1)  \Rightarrow \left( {{x^2} + {y^2}} \right) + \left( {{x^2} - {y^2}} \right) = 25 + 7 \\\ \Rightarrow {x^2} + {x^2} + {y^2} - {y^2} = 32 \\\ \Rightarrow 2{x^2} = 32 \\\ \Rightarrow {x^2} = \dfrac{{32}}{2} = 16 \\\ \therefore x = \sqrt {16} = \pm 4...............\left( 1 \right) \\\

Subtracting the equation x2y2=7{x^2} - {y^2} = 7 from x2+y2=25{x^2} + {y^2} = 25, we get

(x2+y2)(x2y2)=257 x2x2+y2+y2=16 2y2=18 y2=182=9 y=9=±3  \Rightarrow \left( {{x^2} + {y^2}} \right) - \left( {{x^2} - {y^2}} \right) = 25 - 7 \\\ \Rightarrow {x^2} - {x^2} + {y^2} + {y^2} = 16 \\\ \Rightarrow 2{y^2} = 18 \\\ \Rightarrow {y^2} = \dfrac{{18}}{2} = 9 \\\ \therefore y = \sqrt 9 = \pm 3 \\\

Now, (x2+y2)=35&(x2y2)=5\left( {{x^2} + {y^2}} \right) = 35\& \left( {{x^2} - {y^2}} \right) = 5. Adding both the equations, we have

(x2+y2)+(x2y2)=35+5 x2+x2+y2y2=40 2x2=40 x2=402=20 x=20  \Rightarrow \left( {{x^2} + {y^2}} \right) + \left( {{x^2} - {y^2}} \right) = 35 + 5 \\\ \Rightarrow {x^2} + {x^2} + {y^2} - {y^2} = 40 \\\ \Rightarrow 2{x^2} = 40 \\\ \Rightarrow {x^2} = \dfrac{{40}}{2} = 20 \\\ \therefore x = \sqrt {20} \\\

So, for the equations (x2+y2)=35&(x2y2)=5\left( {{x^2} + {y^2}} \right) = 35\& \left( {{x^2} - {y^2}} \right) = 5 we are not getting the values of xx and yy as integers.
Therefore, the vertices of the rectangle are (x,y)=(4,3),(4,3),(4,3),(4,3)\left( {x,y} \right) = \left( {4,3} \right),\left( { - 4,3} \right),\left( { - 4, - 3} \right),\left( {4, - 3} \right). Let ll be the length and bb be the width of the rectangle as shown in the figure.

So, ll is the distance between the points (4,3),(4,3)\left( {4,3} \right),\left( { - 4,3} \right).
Hence l=(44)2+(33)2=(8)2+(0)2=8l = \sqrt {{{\left( { - 4 - 4} \right)}^2} + {{\left( {3 - 3} \right)}^2}} = \sqrt {{{\left( { - 8} \right)}^2} + {{\left( 0 \right)}^2}} = 8
And bb is the distance between the points (4,3),(4,3)\left( {4,3} \right),\left( {4, - 3} \right)
Hence b=(44)2+(33)2=(0)2+(6)2=62=6b = \sqrt {{{\left( {4 - 4} \right)}^2} + {{\left( { - 3 - 3} \right)}^2}} = \sqrt {{{\left( 0 \right)}^2} + {{\left( { - 6} \right)}^2}} = \sqrt {{6^2}} = 6
We know that if l&bl\& b are length and breadth of rectangle respectively then its area is given by l×bl \times b
So, the area of the rectangle formed is equal to 8×6=488 \times 6 = 48.
Thus, the area of the rectangle formed with the vertices is 48 square units.

Note : The distance between the two points (x1,y1)\left( {{x_1},{y_1}} \right) and (x2,y2)\left( {{x_2},{y_2}} \right) is given by (x2x1)2+(y2y1)2\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} . If l&bl\& b are the length and breadth of the rectangle respectively then its area is given by l×bl \times b square units. Always write the units after the area of the rectangle.