Question
Mathematics Question on Complex Numbers and Quadratic Equations
Let z = x + iy be a complex number. The equation arg (zz+1)=4π represents
A
x2+x+y+y2=0
B
x2−x+y+y2=0
C
x2+x−y+y2=0
D
x2+x+y−y2=0
Answer
x2+x+y+y2=0
Explanation
Solution
We have, z=x+iy and arg(zz+1)=4π
∵zz+1=x+iyx+iy+1
=x2+y2((x+1)+iy)(x−iy)
⇒zz+1=x2+y2x2+x+y2+(xy−xy−y)i
=x2+y2x2+y2+x−yi
∴arg(zz+1)=tan−1(x2+y2+x−y)=4π
−x2+y2+xy=tan4π=1
⇒−y=x2+y2+x
⇒x2+y2+x+y=0