Solveeit Logo

Question

Question: Let z, w be two non zero complex number such that \| z \| = \| w\| & arg (z) + arg(w) = p then z =...

Let z, w be two non zero complex number such that | z | = | w| & arg (z) + arg(w) = p then z =

A

wˉ\bar{w}

B

wˉ\bar{w}

C

w

D

– w

Answer

wˉ\bar{w}

Explanation

Solution

Sol. arg (zw) = p Ž zw=z.wˉzw = z.\bar{w} Ž zw.w = zˉwˉ.w\bar{z}\bar{w}.w

Ž z.w2=zˉ.w2z.w^{2} = \bar{z}.|w|^{2} Ž zw2=zˉz2zw^{2} = \bar{z}|z|^{2}

Ž zw2=zˉzzˉzw^{2} = \bar{z}z\bar{z}

Ž w2 = (zˉ)2(\bar{z})^{2}

Ž zˉ\bar{z} = w or – w

Ž zz = wˉ\bar{w} or –wˉ\bar{w}

but only zz = –wˉ\bar{w} satisfies arg (zw)(zw) = p