Solveeit Logo

Question

Question: Let \[z \ne - i\] be any complex number such that \[\dfrac{{z - i}}{{z + i}}\] is a purely imaginary...

Let ziz \ne - i be any complex number such that ziz+i\dfrac{{z - i}}{{z + i}} is a purely imaginary number. Then z+1zz + \dfrac{1}{z} is
A. 0
B. Any non-zero real number other than 1
C. Any non-zero real number
D. Any purely imaginary number

Explanation

Solution

We assume z=x+iyz = x + iy and substitute it in fraction which is given as purely imaginary. Solve this fraction by rationalizing it and then in the end take the real part as zero. This will give us the relation between x and y and then we can write the value of z and find the value of z+1zz + \dfrac{1}{z}

Complete step-by-step answer:
Let us assume z=x+iyz = x + iy
Substitute the value of z in fraction ziz+i\dfrac{{z - i}}{{z + i}}we get
x+iyix+iy+i\Rightarrow \dfrac{{x + iy - i}}{{x + iy + i}}
Take common I from the imaginary terms and write the fraction
x+i(y1)x+i(y+1)\Rightarrow \dfrac{{x + i(y - 1)}}{{x + i(y + 1)}}
Now we rationalize by multiplying both numerator and denominator by xi(y+1)x - i(y + 1)

x+i(y1)x+i(y+1)×xi(y+1)xi(y+1) x[xi(y+1)]+i(y1)[xi(y+1)][x+i(y+1)][xi(y+1)]  \Rightarrow \dfrac{{x + i(y - 1)}}{{x + i(y + 1)}} \times \dfrac{{x - i(y + 1)}}{{x - i(y + 1)}} \\\ \Rightarrow \dfrac{{x[x - i(y + 1)] + i(y - 1)[x - i(y + 1)]}}{{[x + i(y + 1)][x - i(y + 1)]}} \\\

Using the formula (a+b)(ab)=a2b2(a + b)(a - b) = {a^2} - {b^2}in the denominator
x2ix(y+1)+ix(y1)i2(y1)(y+1)x2[i(y+1)]2\Rightarrow \dfrac{{{x^2} - ix(y + 1) + ix(y - 1) - {i^2}(y - 1)(y + 1)}}{{{x^2} - {{[i(y + 1)]}^2}}}
Taking common ix in the numerator
x2+ix[(y1)(y+1)]i2[(y1)(y+1)]x2i2(y+1)2\Rightarrow \dfrac{{{x^2} + ix[(y - 1) - (y + 1)] - {i^2}[(y - 1)(y + 1)]}}{{{x^2} - {i^2}{{(y + 1)}^2}}}
Using the formula (a+b)(ab)=a2b2(a + b)(a - b) = {a^2} - {b^2} in the numerator and substituting the value of i2=1{i^2} = - 1 in both numerator and denominator.

x2+ix[y1y1](1)[y212]x2(1)(y+1)2 x2+ix(2)+(y21)x2+(y+1)2  \Rightarrow \dfrac{{{x^2} + ix[y - 1 - y - 1] - ( - 1)[{y^2} - {1^2}]}}{{{x^2} - ( - 1){{(y + 1)}^2}}} \\\ \Rightarrow \dfrac{{{x^2} + ix( - 2) + ({y^2} - 1)}}{{{x^2} + {{(y + 1)}^2}}} \\\

Writing the real and imaginary terms separately
(x2+y21)2ixx2+(y+1)2\Rightarrow \dfrac{{({x^2} + {y^2} - 1) - 2ix}}{{{x^2} + {{(y + 1)}^2}}}
Now we can write the real and imaginary part separately
x2+y21x2+(y+1)2i2xx2+(y+1)2\Rightarrow \dfrac{{{x^2} + {y^2} - 1}}{{{x^2} + {{(y + 1)}^2}}} - i\dfrac{{2x}}{{{x^2} + {{(y + 1)}^2}}}
Since the number is pure imaginary, so the real term is zero
x2+y21x2+(y+1)2=0\Rightarrow \dfrac{{{x^2} + {y^2} - 1}}{{{x^2} + {{(y + 1)}^2}}} = 0
Cross multiplying the values
x2+y21=0\Rightarrow {x^2} + {y^2} - 1 = 0
Shifting the constant values to right side of the equation
x2+y2=1\Rightarrow {x^2} + {y^2} = 1 … (1)
This is an equation of circle with center (0,0)(0,0) and radius 1
Solving z+1zz + \dfrac{1}{z}by substituting z=x+iyz = x + iy
x+iy+1x+iy\Rightarrow x + iy + \dfrac{1}{{x + iy}}
Rationalizing the fraction part by multiplying both numerator and denominator

x+iy+1x+iy×xiyxiy x+iy+xiy(xiy)(x+iy)  \Rightarrow x + iy + \dfrac{1}{{x + iy}} \times \dfrac{{x - iy}}{{x - iy}} \\\ \Rightarrow x + iy + \dfrac{{x - iy}}{{(x - iy)(x + iy)}} \\\

Using the formula (a+b)(ab)=a2b2(a + b)(a - b) = {a^2} - {b^2} in the denominator

x+iy+xiy(x)2(iy)2 x+iy+xiyx2i2y2  \Rightarrow x + iy + \dfrac{{x - iy}}{{{{(x)}^2} - {{(iy)}^2}}} \\\ \Rightarrow x + iy + \dfrac{{x - iy}}{{{x^2} - {i^2}{y^2}}} \\\

Substitute the value of i2=1{i^2} = - 1

x+iy+xiyx2(1)y2 x+iy+xiyx2+y2  \Rightarrow x + iy + \dfrac{{x - iy}}{{{x^2} - ( - 1){y^2}}} \\\ \Rightarrow x + iy + \dfrac{{x - iy}}{{{x^2} + {y^2}}} \\\

Substitute the value of x2+y2=1{x^2} + {y^2} = 1 from equation (i) in the denominator

x+iy+xiy1 x+iy+xiy 2x  \Rightarrow x + iy + \dfrac{{x - iy}}{1} \\\ \Rightarrow x + iy + x - iy \\\ \Rightarrow 2x \\\

We write the value as 2x+0i2x + 0i. So the imaginary part is zero.
Thus the value of z+1zz + \dfrac{1}{z} is purely real and can take any value.

So, the correct answer is “Option C”.

Note:
Alternative method:
We have z=x+iyz = x + iy
and we know z=1z\overline z = \dfrac{1}{z}
So we can write 1z=z=x+iy=xiy\dfrac{1}{z} = \overline z = \overline {x + iy} = x - iy

z+1z=x+iy+xiy z+1z=2x  \Rightarrow z + \dfrac{1}{z} = x + iy + x - iy \\\ \Rightarrow z + \dfrac{1}{z} = 2x \\\

So, the value of z+1zz + \dfrac{1}{z} has no imaginary part. So, the value can be any real number.
So, option C is correct.