Solveeit Logo

Question

Question: Let , \(z={{\left( \dfrac{\sqrt{3}}{2}+\dfrac{1}{2} \right)}^{5}}+{{\left( \dfrac{\sqrt{3}}{2}-\dfra...

Let , z=(32+12)5+(3212)5z={{\left( \dfrac{\sqrt{3}}{2}+\dfrac{1}{2} \right)}^{5}}+{{\left( \dfrac{\sqrt{3}}{2}-\dfrac{1}{2} \right)}^{5}} . If R(z)R\left( z \right) and I(z)I\left( z \right) respectively denote the real and imaginary parts of zz , then
(a) R(z)>0R\left( z \right)>0 and I(z)>0I\left( z \right)>0
(b) R(z)<0R\left( z \right)<0 and I(z)>0I\left( z \right)>0
(c) R(z)=3R\left( z \right)=3
(d) I(z)=0I\left( z \right)=0

Explanation

Solution

Consider , the equation z=(32+12)5+(3212)5z={{\left( \dfrac{\sqrt{3}}{2}+\dfrac{1}{2} \right)}^{5}}+{{\left( \dfrac{\sqrt{3}}{2}-\dfrac{1}{2} \right)}^{5}} and expand the powers . After separating the powers , you will get a complex number . Convert the complex number to the general form of writing a complex number i.e. z=a+ibz=a+ib , a=R(z),b=I(z)a=R\left( z \right),b=I\left( z \right) ; . At this stage you have the values of R(z)R\left( z \right) and I(z)I\left( z \right) , observe these values and hence choose the option wisely.

Complete step-by-step answer:
We are given a complex number of the form
z=(32+12)5+(3212)5z={{\left( \dfrac{\sqrt{3}}{2}+\dfrac{1}{2} \right)}^{5}}+{{\left( \dfrac{\sqrt{3}}{2}-\dfrac{1}{2} \right)}^{5}}
And we have to observe its real and imaginary parts so first we have to simplify it .
Consider this complex number and expand the terms involving powers to simplify the complex number , and get
z=125(3+i)5+125(3i)5 =125((3+i)2(3+i)2(3+i))+125((3i)2(3i)2(3i)) =125((2+23i)2(3+i))+125((223i)2(3i)) =123((1+3i)2(3+i))+123((13i)2(3i)) =122((1+3i)(3+i))+122((13i)(3i)) =12(3+i)+12(3i) =3\begin{aligned} & z=\dfrac{1}{{{2}^{5}}}{{\left( \sqrt{3}+i \right)}^{5}}+\dfrac{1}{{{2}^{5}}}{{\left( \sqrt{3}-i \right)}^{5}} \\\ & =\dfrac{1}{{{2}^{5}}}\left( {{\left( \sqrt{3}+i \right)}^{2}}{{\left( \sqrt{3}+i \right)}^{2}}\left( \sqrt{3}+i \right) \right)+\dfrac{1}{{{2}^{5}}}\left( {{\left( \sqrt{3}-i \right)}^{2}}{{\left( \sqrt{3}-i \right)}^{2}}\left( \sqrt{3}-i \right) \right) \\\ & =\dfrac{1}{{{2}^{5}}}\left( {{\left( 2+2\sqrt{3}i \right)}^{2}}\left( \sqrt{3}+i \right) \right)+\dfrac{1}{{{2}^{5}}}\left( {{\left( 2-2\sqrt{3}i \right)}^{2}}\left( \sqrt{3}-i \right) \right) \\\ & =\dfrac{1}{{{2}^{3}}}\left( {{\left( 1+\sqrt{3}i \right)}^{2}}\left( \sqrt{3}+i \right) \right)+\dfrac{1}{{{2}^{3}}}\left( {{\left( 1-\sqrt{3}i \right)}^{2}}\left( \sqrt{3}-i \right) \right) \\\ & =\dfrac{1}{{{2}^{2}}}\left( \left( -1+\sqrt{3}i \right)\left( \sqrt{3}+i \right) \right)+\dfrac{1}{{{2}^{2}}}\left( \left( -1-\sqrt{3}i \right)\left( \sqrt{3}-i \right) \right) \\\ & =\dfrac{1}{2}\left( -\sqrt{3}+i \right)+\dfrac{1}{2}\left( -\sqrt{3}-i \right) \\\ & =-\sqrt{3} \end{aligned}
Now, we will change this value of zz to the general form of complex number, so that we could observe the real and imaginary parts of zzand thus could check the options, The general form of writing complex number is z=a+ibz=a+ib , We will convert zz into this form and observe it
z=3 z=3+0i \begin{aligned} & z=-\sqrt{3} \\\ & z=-\sqrt{3}+0i \\\ \end{aligned}
R(z)=3\Rightarrow R\left( z \right)=-\sqrt{3} and I(z)=0I\left( z \right)=0
Hence, R(z)<0R\left( z \right)<0 and I(z)=0I\left( z \right)=0
(a) is not correct as R(z)<0R\left( z \right)<0
(b) satisfies that R(z)<0R\left( z \right)<0 but , I(z)I\left( z \right) is not greater than 0 , it could be correct if it says I(z)0I\left( z \right)\ge 0
(c) is not correct

So, the correct answer is “Option d”.

Note: The alternative for this question is to expand z=(32+12)5+(3212)5z={{\left( \dfrac{\sqrt{3}}{2}+\dfrac{1}{2} \right)}^{5}}+{{\left( \dfrac{\sqrt{3}}{2}-\dfrac{1}{2} \right)}^{5}} directly with the binomial expansion formula and then proceed further as same . The binomial expansion formula is used to expand large powers and is given by
(a+b)n=(n 0 )anb0+(n 1 )an1b1+(n 2 )an2b2+...+(n n1 )a1bn1+(n n )a0bn{{\left( a+b \right)}^{n}}=\left( \begin{matrix} n \\\ 0 \\\ \end{matrix} \right){{a}^{n}}{{b}^{0}}+\left( \begin{matrix} n \\\ 1 \\\ \end{matrix} \right){{a}^{n-1}}{{b}^{1}}+\left( \begin{matrix} n \\\ 2 \\\ \end{matrix} \right){{a}^{n-2}}{{b}^{2}}+...+\left( \begin{matrix} n \\\ n-1 \\\ \end{matrix} \right){{a}^{1}}{{b}^{n-1}}+\left( \begin{matrix} n \\\ n \\\ \end{matrix} \right){{a}^{0}}{{b}^{n}}