Solveeit Logo

Question

Question: Let \({z_k} = \cos \left( {\dfrac{{2k\pi }}{{10}}} \right) + i\sin \left( {\dfrac{{2k\pi }}{{10}}} \...

Let zk=cos(2kπ10)+isin(2kπ10);k=1,2,......9.{z_k} = \cos \left( {\dfrac{{2k\pi }}{{10}}} \right) + i\sin \left( {\dfrac{{2k\pi }}{{10}}} \right); k = 1,2,......9.

List-IList-II
(P) For each zk{z_k} there exists a zj{z_j} such that zkzj=1{z_k} \cdot {z_j} = 1(1) True
(Q) There exist a k(1,2,......,9)k \in \left( {1,2,......,9} \right) such that z1z=zk{z_1} \cdot z = {z_k} has no solution zz in the set of complex numbers(2) False
(R) $\dfrac{{\left{1 - {z_1}} \right
(S) 1k=19cos(2kπ100)1 - \sum\nolimits_{k = 1}^9 {\cos \left( {\dfrac{{2k\pi }}{{100}}} \right)} (4) 2

Which of the following is the correct match?
A. P-1, Q-2, R-4, S-3
B. P-2, Q-1, R-3, S-4
C. P-1, Q-2, R-3, S-4
D. P-2, Q-1, R-4, S-3

Explanation

Solution

A number of the form z=a+ibz = a + ib , where a and ba{\text{ and }}b are real numbers, is called a complex number, aa is called the real part, and bb called the imaginary part.
The conjugate of the complex number z=a+ibz = a + ib , denoted by zˉ\bar z,
zˉ=aib\bar z = a - ib
If nn is a positive integer, then x'x' is said to be an nth{n^{th}} root of unity if it satisfies the equation xn=1{x^n} = 1 .
For example: For n=3n = 3 , x'x' is said to be an 3rd{3^{rd}} or cubic root of unity of equation x3=1{x^3} = 1 .
The complex expression xk=cos(2kπn)+isin(2kπn);n=1,2,......,(n1){x_k} = \cos \left( {\dfrac{{2k\pi }}{n}} \right) + i\sin \left( {\dfrac{{2k\pi }}{n}} \right);n = 1,2,......,\left( {n - 1} \right) is the nth{n^{th}} root of unity.
You can also derive the nth{n^{th}} root of unity but it is advisable to remember it.

Complete step-by-step answer:
Given that zk=cos(2kπ10)+isin(2kπ10);k=1,2,......,9.{z_k} = \cos \left( {\dfrac{{2k\pi }}{{10}}} \right) + i\sin \left( {\dfrac{{2k\pi }}{{10}}} \right);k = 1,2,......,9.
zk{z_k} is a complex number. For every complex number, there exists its conjugate zk\overline {{z_k}}
For k=1k = 1, z1=cos(π5)+isin(π5){z_1} = \cos \left( {\dfrac{\pi }{5}} \right) + i\sin \left( {\dfrac{\pi }{5}} \right)
Then its conjugate, z1=cos(π5)isin(π5)\overline {{z_1}} = \cos \left( {\dfrac{\pi }{5}} \right) - i\sin \left( {\dfrac{\pi }{5}} \right)
Let's find z1z1{z_1} \cdot \overline {{z_1}}
z1z1=[cos(π5)+isin(π5)][cos(π5)isin(π5)]{z_1} \cdot \overline {{z_1}} = \left[ {\cos \left( {\dfrac{\pi }{5}} \right) + i\sin \left( {\dfrac{\pi }{5}} \right)} \right]\left[ {\cos \left( {\dfrac{\pi }{5}} \right) - i\sin \left( {\dfrac{\pi }{5}} \right)} \right]
Using identity (ab)(a+b)=a2b2\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}
On comparing with the above identity:
a=cos(π5)a = \cos \left( {\dfrac{\pi }{5}} \right) , b=isin(π5)b = i\sin \left( {\dfrac{\pi }{5}} \right)
z1z1=(cos(π5))2(isin(π5))2 (cos(π5))2i2(sin(π5))2  {z_1} \cdot \overline {{z_1}} = {\left( {\cos \left( {\dfrac{\pi }{5}} \right)} \right)^2} - {\left( {i\sin \left( {\dfrac{\pi }{5}} \right)} \right)^2} \\\ \Rightarrow {\left( {\cos \left( {\dfrac{\pi }{5}} \right)} \right)^2} - {i^2}{\left( {\sin \left( {\dfrac{\pi }{5}} \right)} \right)^2} \\\
We know, i2=1{i^2} = - 1 , substituting it.
z1z1=(cos(π5))2+(isin(π5))2{z_1} \cdot \overline {{z_1}} = {\left( {\cos \left( {\dfrac{\pi }{5}} \right)} \right)^2} + {\left( {i\sin \left( {\dfrac{\pi }{5}} \right)} \right)^2}
Using trigonometric identity sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1
z1z1=1{z_1} \cdot \overline {{z_1}} = 1
This result is true for every k(1,2,......,9)k \in \left( {1,2,......,9} \right)
so that zkzk=1{z_k} \cdot \overline {{z_k}} = 1
zk=cos(2kπ10)isin(2kπ10);k=1,2,......,9.\Rightarrow \overline {{z_k}} = \cos \left( {\dfrac{{2k\pi }}{{10}}} \right) - i\sin \left( {\dfrac{{2k\pi }}{{10}}} \right);k = 1,2,......,9.
Take zj=zk{z_j} = \overline {{z_k}} , then the given statement:
For each zk{z_k} there exists a zj{z_j} such that zkzj=1{z_k} \cdot {z_j} = 1 is true.

Solving (Q)
The given equation z1z=zk{z_1} \cdot z = {z_k}
Multiplying both sides by the conjugate of z1{z_1} . i.e. z1\overline {{z_1}}
z1z1z=z1zk\overline {{z_1}} {z_1} \cdot z = \overline {{z_1}} \cdot {z_k}
We know, z1z1=1{z_1} \cdot \overline {{z_1}} = 1
1z=z1zk z=z1zk  \Rightarrow 1 \cdot z = \overline {{z_1}} \cdot {z_k} \\\ \Rightarrow z = \overline {{z_1}} \cdot {z_k} \\\
The term z1zk\overline {{z_1}} \cdot {z_k} is a multiplication of two complex numbers z1 and zk\overline {{z_1}} {\text{ and }}{z_k} , it will be either real or complex number. In other words, the product z1zk\overline {{z_1}} \cdot {z_k} exists.
Hence, the value of zz in equation z1z=zk{z_1} \cdot z = {z_k} exists.
Therefore, the given statement:
There exist a k(1,2,......,9)k \in \left( {1,2,......,9} \right) such that z1z=zk{z_1} \cdot z = {z_k} has no solution zz in the set of complex numbers is false

Solving (R):
On comparing with xk=cos(2kπn)+isin(2kπn);k=1,2,......,(k1){x_k} = \cos \left( {\dfrac{{2k\pi }}{n}} \right) + i\sin \left( {\dfrac{{2k\pi }}{n}} \right);k = 1,2,......,\left( {k - 1} \right)
The given expression zk=cos(2kπ10)+isin(2kπ10);k=1,2,......,9.{z_k} = \cos \left( {\dfrac{{2k\pi }}{{10}}} \right) + i\sin \left( {\dfrac{{2k\pi }}{{10}}} \right);k = 1,2,......,9.
Value of n = 10
So, zk{z_k} is the tenth root of unity.
The expansion of the equation x101=0{x^{10}} - 1 = 0 gives the roots.
x101=(x1)(xz1)(xz2)......(xz9){x^{10}} - 1 = \left( {x - 1} \right)\left( {x - {z_1}} \right)\left( {x - {z_2}} \right)......\left( {x - {z_9}} \right)
x101(x1)=(xz1)(xz2)......(xz9)\dfrac{{{x^{10}} - 1}}{{\left( {x - 1} \right)}} = \left( {x - {z_1}} \right)\left( {x - {z_2}} \right)......\left( {x - {z_9}} \right)
The expression x101(x1)\dfrac{{{x^{10}} - 1}}{{\left( {x - 1} \right)}} is the sum of Geometric Progression, G.P. 1,x1,x2,x3,......,x91,{x^1},{x^2},{x^3},......,{x^9}
x101(x1)\dfrac{{{x^{10}} - 1}}{{\left( {x - 1} \right)}} =1+x1+x2+x3+......+x9 = 1 + {x^1} + {x^2} + {x^3} + ...... + {x^9}
1+x+x2+......+x9=(xz1)(xz2)......(xz9)\Rightarrow 1 + x + {x^2} + ...... + {x^9} = \left( {x - {z_1}} \right)\left( {x - {z_2}} \right)......\left( {x - {z_9}} \right)
Taking modulus on both sides
1+x+x2+......+x9=(xz1)(xz2)......(xz9)\Rightarrow \left| {1 + x + {x^2} + ...... + {x^9}} \right| = \left| {\left( {x - {z_1}} \right)\left( {x - {z_2}} \right)......\left( {x - {z_9}} \right)} \right|
Put x=1x = 1
1+1+1+......+1=(1z1)(1z2)......(1z9)\Rightarrow \left| {1 + 1 + 1 + ...... + 1} \right| = \left| {\left( {1 - {z_1}} \right)} \right|\left| {\left( {1 - {z_2}} \right)} \right|......\left| {\left( {1 - {z_9}} \right)} \right|
(1z1)(1z2)......(1z9)=10\Rightarrow \left| {\left( {1 - {z_1}} \right)} \right|\left| {\left( {1 - {z_2}} \right)} \right|......\left| {\left( {1 - {z_9}} \right)} \right| = 10
Given expression 1z11z2......1z910\dfrac{{\left| {1 - {z_1}} \right|\left| {1 - {z_2}} \right|......\left| {1 - {z_9}} \right|}}{{10}}
1010=1\Rightarrow \dfrac{{10}}{{10}} = 1

Solving (S):
In the equation x101=0{x^{10}} - 1 = 0
Sum of its roots = 0
Given zk{z_k} is the tenth root of unity.
k=09zk=0\Rightarrow \sum\limits_{k = 0}^9 {{z_k}} = 0
Given that zk=cos(2kπ10)+isin(2kπ10);k=1,2,......,9.{z_k} = \cos \left( {\dfrac{{2k\pi }}{{10}}} \right) + i\sin \left( {\dfrac{{2k\pi }}{{10}}} \right);k = 1,2,......,9.
k=09[cos(2kπ10)+isin(2kπ10)]=0\sum\limits_{k = 0}^9 {\left[ {\cos \left( {\dfrac{{2k\pi }}{{10}}} \right) + i\sin \left( {\dfrac{{2k\pi }}{{10}}} \right)} \right]} = 0
k=09cos(2kπ10)+ik=09sin(2kπ10)=0\Rightarrow \sum\limits_{k = 0}^9 {\cos \left( {\dfrac{{2k\pi }}{{10}}} \right)} + i\sum\limits_{k = 0}^9 {\sin \left( {\dfrac{{2k\pi }}{{10}}} \right)} = 0
The term k=09cos(2kπ10)=cos(2(0)π10)+cos(2(1)π10)+cos(2(2)π10)+...\sum\limits_{k = 0}^9 {\cos \left( {\dfrac{{2k\pi }}{{10}}} \right)} = \cos \left( {\dfrac{{2\left( 0 \right)\pi }}{{10}}} \right) + \cos \left( {\dfrac{{2\left( 1 \right)\pi }}{{10}}} \right) + \cos \left( {\dfrac{{2\left( 2 \right)\pi }}{{10}}} \right) + ... will be some real number, and similarly, the term k=09sin(2kπ10)\sum\limits_{k = 0}^9 {\sin \left( {\dfrac{{2k\pi }}{{10}}} \right)} will also be some real number.
For the complex number a+ib=0a + ib = 0 , a=0,b=0a = 0,b = 0.
That is why k=09cos(2kπ10)=0\sum\limits_{k = 0}^9 {\cos \left( {\dfrac{{2k\pi }}{{10}}} \right)} = 0 and k=09sin(2kπ10)=0\sum\limits_{k = 0}^9 {\sin \left( {\dfrac{{2k\pi }}{{10}}} \right)} = 0
cos(2(0)π10)+k=19cos(2kπ10)=0\Rightarrow \cos \left( {\dfrac{{2\left( 0 \right)\pi }}{{10}}} \right) + \sum\limits_{k = 1}^9 {\cos \left( {\dfrac{{2k\pi }}{{10}}} \right)} = 0
cos(0)+k=19cos(2kπ10)=0\Rightarrow \cos \left( 0 \right) + \sum\limits_{k = 1}^9 {\cos \left( {\dfrac{{2k\pi }}{{10}}} \right)} = 0
We know, cos(0)=1\cos \left( 0 \right) = 1
k=19cos(2kπ10)=1\Rightarrow \sum\limits_{k = 1}^9 {\cos \left( {\dfrac{{2k\pi }}{{10}}} \right)} = 1
The given expression in (S):
1k=19cos(2kπ100)1 - \sum\nolimits_{k = 1}^9 {\cos \left( {\dfrac{{2k\pi }}{{100}}} \right)}
1(1)=2\Rightarrow 1 - \left( { - 1} \right) = 2

So, the correct answer is “Option C”.

Note: In the trigonometric identity sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1 make sure that the angle of sine and cosine is the same.
The value of unknown (or variable) is an equation that is known as its solution.
Notice that for k=09sin(2kπ10)=0\sum\limits_{k = 0}^9 {\sin \left( {\dfrac{{2k\pi }}{{10}}} \right)} = 0
sin(0)+k=19sin(2kπ10)=0\sin \left( 0 \right) + \sum\limits_{k = 1}^9 {\sin \left( {\dfrac{{2k\pi }}{{10}}} \right)} = 0
We know sin0=0\sin 0 = 0
Thus, the summation from k=1 to 9k = 1{\text{ to 9}}, k=19sin(2kπ10)\sum\limits_{k = 1}^9 {\sin \left( {\dfrac{{2k\pi }}{{10}}} \right)} is still 0.