Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

Let zCz \in C, the set of complex numbers. Then the equation, 2z+3izi=02 | z + 3i| - | z - i| = 0 represents :

A

a circle with radius 83\frac{8}{3}

B

a circle with diameter 103\frac{10}{3}

C

an ellipse with length of major axis 163\frac{16}{3}

D

an ellipse with length of minor axis 169\frac{16}{9}

Answer

a circle with radius 83\frac{8}{3}

Explanation

Solution

The correct answer is A: a circle with radius 83\frac{8}{3}
Given that;
The equation is :zz+3izi=0(i)z|z+3i|-|z-i|=0-(i)
Now substitute :z=x+iyz=x+iy in equation (i)
\therefore$$2\left|x+i\left(y+3\right)\right| = \left|x+i \left(y-1\right)\right|
2x2+(y+3)2=x2+(y1)2\Rightarrow 2\sqrt{x^{2}+\left(y+3\right)^{2}} = \sqrt{x^{2}+\left(y-1\right)^{2}}
4x2+4(y+3)2=x2+(y1)2\Rightarrow 4x^{2} + 4\left( y + 3\right)^{2} = x^{2} + \left( y - 1\right)^{2}
3x2=y22y+14y224y36\Rightarrow 3x^{2} = y^{2} - 2y + 1 - 4y^{2} - 24y - 36
3x2+3y2+26y+35=0\Rightarrow 3x^{2} + 3y^{2} + 26y + 35 = 0
x2+y2+263y+353=0\Rightarrow x^{2} + y^{2}+\frac{26}{3}y + \frac{35}{3} = 0
r=0+1699353\Rightarrow r = \sqrt{0+\frac{169}{9}-\frac{35}{3}}
649=83\Rightarrow \sqrt{\frac{64}{9}} = \frac{8}{3}
radius
radius