Solveeit Logo

Question

Question: Let $z = \frac{-1+\sqrt{3}i}{2}$, where $i = \sqrt{-1}$, and r, s $\in$ {1, 2, 3}. Let $P = \begin{b...

Let z=1+3i2z = \frac{-1+\sqrt{3}i}{2}, where i=1i = \sqrt{-1}, and r, s \in {1, 2, 3}. Let P=[(z)rz2sz2szr]P = \begin{bmatrix} (-z)^r & z^{2s} \\ z^{2s} & z^r \end{bmatrix} and I be the identity matrix of order 2. Then the total number of ordered pairs (r, s) for which P2=IP^2 = -I is ______.

Answer

1

Explanation

Solution

The given complex number is z=1+3i2z = \frac{-1+\sqrt{3}i}{2}. This is the complex cube root of unity, commonly denoted as ω\omega. So, z=ωz = \omega. The properties of ω\omega are ω3=1\omega^3 = 1 and 1+ω+ω2=01 + \omega + \omega^2 = 0.

The given matrix is P=[(ω)rω2sω2sωr]P = \begin{bmatrix} (-\omega)^r & \omega^{2s} \\ \omega^{2s} & \omega^r \end{bmatrix}, where r, s \in {1, 2, 3}. We are looking for the ordered pairs (r, s) such that P2=IP^2 = -I, where I=[1001]I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.

Let's compute P2P^2: P2=[(ω)rω2sω2sωr][(ω)rω2sω2sωr]=[((ω)r)2+(ω2s)2(ω)rω2s+ω2sωrω2s(ω)r+ωrω2s(ω2s)2+(ωr)2]P^2 = \begin{bmatrix} (-\omega)^r & \omega^{2s} \\ \omega^{2s} & \omega^r \end{bmatrix} \begin{bmatrix} (-\omega)^r & \omega^{2s} \\ \omega^{2s} & \omega^r \end{bmatrix} = \begin{bmatrix} ((-\omega)^r)^2 + (\omega^{2s})^2 & (-\omega)^r \omega^{2s} + \omega^{2s} \omega^r \\ \omega^{2s} (-\omega)^r + \omega^r \omega^{2s} & (\omega^{2s})^2 + (\omega^r)^2 \end{bmatrix}

Since (ω)r=(1)rωr(-\omega)^r = (-1)^r \omega^r, we have ((ω)r)2=((1)rωr)2=(1)2rω2r=1ω2r=ω2r((-\omega)^r)^2 = ((-1)^r \omega^r)^2 = (-1)^{2r} \omega^{2r} = 1 \cdot \omega^{2r} = \omega^{2r}. Also, (ω2s)2=ω4s(\omega^{2s})^2 = \omega^{4s}.

The diagonal elements of P2P^2 are ω2r+ω4s\omega^{2r} + \omega^{4s}. The off-diagonal elements are (ω)rω2s+ω2sωr=(1)rωrω2s+ωr+2s=(1)rωr+2s+ωr+2s=ωr+2s((1)r+1)(-\omega)^r \omega^{2s} + \omega^{2s} \omega^r = (-1)^r \omega^r \omega^{2s} + \omega^{r+2s} = (-1)^r \omega^{r+2s} + \omega^{r+2s} = \omega^{r+2s}((-1)^r + 1).

So, P2=[ω2r+ω4sωr+2s((1)r+1)ωr+2s((1)r+1)ω2r+ω4s]P^2 = \begin{bmatrix} \omega^{2r} + \omega^{4s} & \omega^{r+2s}((-1)^r + 1) \\ \omega^{r+2s}((-1)^r + 1) & \omega^{2r} + \omega^{4s} \end{bmatrix}.

We are given P2=I=[1001]P^2 = -I = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}. Comparing the elements, we get two equations:

  1. ω2r+ω4s=1\omega^{2r} + \omega^{4s} = -1
  2. ωr+2s((1)r+1)=0\omega^{r+2s}((-1)^r + 1) = 0

Let's analyze the second equation. Since ωk0\omega^k \neq 0 for any integer kk, ωr+2s0\omega^{r+2s} \neq 0. Thus, we must have (1)r+1=0(-1)^r + 1 = 0, which implies (1)r=1(-1)^r = -1. This condition holds if and only if r is an odd integer. The possible values for r are {1, 2, 3}. Among these, the odd values are 1 and 3. So, r must be 1 or 3.

Now let's analyze the first equation: ω2r+ω4s=1\omega^{2r} + \omega^{4s} = -1. We know that 1+ω+ω2=01 + \omega + \omega^2 = 0, so ω+ω2=1\omega + \omega^2 = -1. The possible values for ωk\omega^k are 1,ω,ω21, \omega, \omega^2 (since ω3=1\omega^3=1, ωk=ωk(mod3)\omega^k = \omega^{k \pmod 3}). The equation ω2r+ω4s=1\omega^{2r} + \omega^{4s} = -1 implies that the two terms ω2r\omega^{2r} and ω4s\omega^{4s} must be ω\omega and ω2\omega^2 in some order. That is, {ω2r,ω4s}={ω,ω2}\{\omega^{2r}, \omega^{4s}\} = \{\omega, \omega^2\}.

We check the possible values of r (1 and 3) and s (1, 2, 3).

Case 1: r = 1 2r=2(1)=22r = 2(1) = 2. So ω2r=ω2\omega^{2r} = \omega^2. The first equation becomes ω2+ω4s=1\omega^2 + \omega^{4s} = -1. Since ω2+ω=1\omega^2 + \omega = -1, this requires ω4s=ω\omega^{4s} = \omega. This implies 4s1(mod3)4s \equiv 1 \pmod 3. Let's test s \in {1, 2, 3}:

  • If s=1, 4s=44s = 4. 41(mod3)4 \equiv 1 \pmod 3. So ω4=ω\omega^4 = \omega. This works.
  • If s=2, 4s=84s = 8. 82(mod3)8 \equiv 2 \pmod 3. So ω8=ω2\omega^8 = \omega^2. This does not work (ω2+ω2=2ω21\omega^2 + \omega^2 = 2\omega^2 \neq -1).
  • If s=3, 4s=124s = 12. 120(mod3)12 \equiv 0 \pmod 3. So ω12=ω0=1\omega^{12} = \omega^0 = 1. This does not work (ω2+1=ω1\omega^2 + 1 = -\omega \neq -1). So, for r=1, the only possible value for s is 1. This gives the ordered pair (1, 1).

Let's verify the pair (1, 1). r=1 is odd, so the second equation is satisfied. For r=1, s=1, ω2r=ω2\omega^{2r} = \omega^2 and ω4s=ω4=ω\omega^{4s} = \omega^4 = \omega. ω2r+ω4s=ω2+ω=1\omega^{2r} + \omega^{4s} = \omega^2 + \omega = -1. The first equation is satisfied. Thus, (1, 1) is a valid pair.

Case 2: r = 3 2r=2(3)=62r = 2(3) = 6. So ω2r=ω6=(ω3)2=12=1\omega^{2r} = \omega^6 = (\omega^3)^2 = 1^2 = 1. The first equation becomes 1+ω4s=11 + \omega^{4s} = -1. This implies ω4s=2\omega^{4s} = -2. The possible values for ω4s\omega^{4s} are 1,ω,ω21, \omega, \omega^2. None of these is equal to -2. So, there are no values of s for r=3 that satisfy the first equation.

Therefore, the only ordered pair (r, s) from {1, 2, 3} that satisfies the conditions is (1, 1). The total number of such ordered pairs is 1.

The final answer is 1\boxed{1}.

Explanation of the solution:

  1. Identify zz as the complex cube root of unity ω\omega.

  2. Calculate P2P^2 in terms of ω\omega.

  3. Equate P2P^2 to I-I to obtain a system of equations.

  4. Solve the off-diagonal equation: ωr+2s((1)r+1)=0\omega^{r+2s}((-1)^r + 1) = 0. Since ωk0\omega^k \neq 0, this implies (1)r+1=0(-1)^r + 1 = 0, so (1)r=1(-1)^r = -1. This means r must be odd. Given r {1,2,3}\in \{1, 2, 3\}, r must be 1 or 3.

  5. Solve the diagonal equation: ω2r+ω4s=1\omega^{2r} + \omega^{4s} = -1. Using the property ω+ω2=1\omega + \omega^2 = -1, this equation is satisfied if and only if {ω2r,ω4s}={ω,ω2}\{\omega^{2r}, \omega^{4s}\} = \{\omega, \omega^2\}.

  6. Check the possible values of r (1 and 3) and s (1, 2, 3).

    • If r=1, ω2r=ω2\omega^{2r} = \omega^2. We need ω4s=ω\omega^{4s} = \omega. This requires 4s1(mod3)4s \equiv 1 \pmod 3. For s {1,2,3}\in \{1, 2, 3\}, only s=1 satisfies this. This gives the pair (1, 1).
    • If r=3, ω2r=ω6=1\omega^{2r} = \omega^6 = 1. We need 1+ω4s=11 + \omega^{4s} = -1, which means ω4s=2\omega^{4s} = -2. No value of ωk\omega^k is -2, so there are no solutions for r=3.
  7. The only valid ordered pair is (1, 1).

  8. The total number of ordered pairs is 1.

The final answer is 1\boxed{1}.