Solveeit Logo

Question

Question: Let \[z = \dfrac{{ - 1 + \sqrt {3i} }}{2}\], where \[i = \sqrt { - 1} \] and \[r,s \in \left\\{ {1,2...

Let z=1+3i2z = \dfrac{{ - 1 + \sqrt {3i} }}{2}, where i=1i = \sqrt { - 1} and r,s \in \left\\{ {1,2,3} \right\\}. Let P = \left[ {\begin{array}{*{20}{c}} {{{\left( { - z} \right)}^r}}&{{z^{2s}}} \\\ {{z^{2s}}}&{{z^r}} \end{array}} \right] and II be the identity matrix of order 22. Then the total number of ordered pairs (r,s)\left( {r,s} \right) for which P2=I{P^2} = - I is

Explanation

Solution

Here we are asked to find the number of ordered pairs (r,s)\left( {r,s} \right) in total with the given data. For that, we will try to derive the value zz from the given data then we will substitute it in the given matrix PP. The by using the given condition that P2=I{P^2} = - I equating the matrix we got to the identity matrix we will find the possible values of ss & rr.

Complete step-by-step solution:
It is given that z=1+3i2z = \dfrac{{ - 1 + \sqrt {3i} }}{2} where, i=1i = \sqrt { - 1} and also given that r,s \in \left\\{ {1,2,3} \right\\}. We aim to find the total number of ordered pairs (r,s)\left( {r,s} \right) when P2=I{P^2} = - Iwhere P = \left[ {\begin{array}{*{20}{c}} {{{\left( { - z} \right)}^r}}&{{z^{2s}}} \\\ {{z^{2s}}}&{{z^r}} \end{array}} \right] and II the identity matrix.
Consider the given complex number z=1+3i2z = \dfrac{{ - 1 + \sqrt {3i} }}{2} this can be written as z=cos2π3+isin2π3=ei2π3=ωz = \cos \dfrac{{2\pi }}{3} + i\sin \dfrac{{2\pi }}{3} = {e^{i\dfrac{{2\pi }}{3}}} = \omega where ω\omega is the cubic root of unity.
Thus, we got that z=ωz = \omega .
Now consider the given matrix P = \left[ {\begin{array}{*{20}{c}} {{{\left( { - z} \right)}^r}}&{{z^{2s}}} \\\ {{z^{2s}}}&{{z^r}} \end{array}} \right] and let us find the value of P2{P^2} that is P×PP \times P

{{{\left( { - z} \right)}^r}}&{{z^{2s}}} \\\ {{z^{2s}}}&{{z^r}} \end{array}} \right] \times \left[ {\begin{array}{*{20}{c}} {{{\left( { - z} \right)}^r}}&{{z^{2s}}} \\\ {{z^{2s}}}&{{z^r}} \end{array}} \right]$$ On multiplying these matrices, we get $${P^2} = \left[ {\begin{array}{*{20}{c}} {{{\left( { - z} \right)}^{2r}} + {z^{4s}}}&{{{\left( { - z} \right)}^r}{z^{2s}} + {z^r}{z^{2s}}} \\\ {{{\left( { - z} \right)}^r}{z^{2s}} + {z^r}{z^{2s}}}&{{z^{4s}} + {z^{2r}}} \end{array}} \right]$$ Here we are aiming to find the total number of ordered pairs $$\left( {r,s} \right)$$ when $${P^2} = - I$$. Substituting the values, we have in this condition we get $$\left[ {\begin{array}{*{20}{c}} {{{\left( { - z} \right)}^{2r}} + {z^{4s}}}&{{{\left( { - z} \right)}^r}{z^{2s}} + {z^r}{z^{2s}}} \\\ {{{\left( { - z} \right)}^r}{z^{2s}} + {z^r}{z^{2s}}}&{{z^{4s}} + {z^{2r}}} \end{array}} \right] = - \left[ {\begin{array}{*{20}{c}} 1&0 \\\ 0&1 \end{array}} \right]$$ $$\left[ {\begin{array}{*{20}{c}} {{{\left( { - z} \right)}^{2r}} + {z^{4s}}}&{{{\left( { - z} \right)}^r}{z^{2s}} + {z^r}{z^{2s}}} \\\ {{{\left( { - z} \right)}^r}{z^{2s}} + {z^r}{z^{2s}}}&{{z^{4s}} + {z^{2r}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { - 1}&0 \\\ 0&{ - 1} \end{array}} \right]$$ From the above expression, we get $${\left( { - z} \right)^{2r}} + {z^{4s}} = - 1$$ $${\left( { - z} \right)^r}{z^{2s}} + {z^r}{z^{2s}} = 0$$ $${\left( { - z} \right)^r}{z^{2s}} + {z^r}{z^{2s}} = 0$$ $${z^{4s}} + {z^{2r}} = - 1$$ From the above set of equations consider the third equation $${\left( { - z} \right)^r}{z^{2s}} + {z^r}{z^{2s}} = 0$$ On simplifying this equation, we get $$\left( {{{\left( { - z} \right)}^r} + {z^r}} \right){z^{2s}} = 0$$ We already derived that $$z = \omega $$ substituting this in the above equation we get $$\left( {{{\left( { - \omega } \right)}^r} + {\omega ^r}} \right){\omega ^{2s}} = 0$$ $$ \Rightarrow {\omega ^{2s}} = 0\& {\left( { - \omega } \right)^r} + {\omega ^r} = 0$$ But $${\omega ^{2s}} \ne 0$$ (Since $$\omega $$- cubic root of unity). Therefore, $${\left( { - \omega } \right)^r} + {\omega ^r} = 0$$ when $$r$$ is odd thus, $$r = \left\\{ {1,3} \right\\}$$ Thus, we have found the values of $$r$$ now we will find the values of $$s$$. Substituting $$r = \left\\{ {1,3} \right\\}$$ in the equation $$ \Rightarrow {\omega ^{4s}} = - 1 - {\omega ^2}$$ we get: When $$r = 1$$, $$i,j$$ $$ \Rightarrow {\omega ^{4s}} = - 1 - {\left( { - \omega } \right)^2}$$ $$ \Rightarrow {\omega ^{4s}} = - 1 - {\omega ^2}$$ $$ \Rightarrow {\omega ^{4s}} = \omega $$ $$ \Rightarrow s = 1$$ When $$r = 3$$, $${\left( { - \omega } \right)^6} + {\omega ^{4s}} = - 1$$ $${\omega ^{4s}} = - 1 - 1$$ (Since $$\omega $$ is cubic root of unity) $${\omega ^{4s}} = - 2$$ This implies that no value $$s$$ is possible. Therefore, $$s = 1$$ thus we get, $$\left( {r,s} \right) = \left( {1,1} \right)$$ Therefore, the total number of ordered pairs $$\left( {r,s} \right)$$ is only one that is $$\left( {1,1} \right)$$.** **Note:** Points we need to remember that $$\omega $$ is the cubic root of unity and we have that $${\omega ^2} + \omega + 1 = 0$$. When two matrices are equal then their terms will be equal concerning their positions. That is if two matrices are equal $$\left[ A \right] = \left[ B \right]$$ then $${a_{ij}} = {b_{ij}}$$ for all $$i,j$$.