Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

Let z=cosθ+isinθz = \cos \theta + i \sin \theta. Then, the value of m=015Im(z2m1)\displaystyle \sum _{m=0}^{15} Im (z^{2m-1}) at θ=2\theta = 2^\circ is

A

1sin2\frac{1}{\sin 2^\circ}

B

13sin2\frac{1}{3 \sin 2^\circ}

C

12sin2\frac{1}{2 \sin 2^\circ}

D

14sin2\frac{1}{4 \sin 2^\circ}

Answer

14sin2\frac{1}{4 \sin 2^\circ}

Explanation

Solution

Given that, z=cosθ+isinθ=eiθz = \cos\theta + i \sin \theta = e^i \theta
m=115im(z3m1)=m=115im(e(iθ)2m1\therefore \, \, \, \, \, \, \, \, \, \, \, \displaystyle \sum _{m=1}^{15} im(z^{3m-1})=\displaystyle \sum_{m=1}^{15} im(e^(i\theta)^{2m-1}
=m=115imei(2m1)θ\, \, \, \, \, \, \, \, \, \, \, \, = \displaystyle \sum_{m=1}^{15} im \, e^i{^{(2m-1)\theta}}
=sinθ+sin3θ+sin5θ+...+sin29θ= \sin \theta + \sin 3 \theta+ \sin 5 \theta + ... + \sin 29 \theta
=sin(θ+29+θ2sin(15×2θ2)sin(2θ2)=\frac{\sin\bigg(\frac{\theta+29+\theta}{2}\sin\bigg(\frac{15\times2\theta}{2}\bigg)}{\sin\bigg(\frac{2\theta}{2}\bigg)}
=sin(15θ)sin(15θ)sinθ=14sin2=\frac{\sin(15\theta) \sin(15 \theta)}{\sin\theta}=\frac{1}{4 \sin 2^{\circ}}