Question
Question: Let Z be a non real complex no. lying on the circle \|Z\| = 1, then Z is :...
Let Z be a non real complex no. lying on the circle |Z| = 1, then Z is :
A
tan(2argZ)
B
sin(2argZ)
C
1−itan(2argZ)1+itan(2argZ)
D
None of these
Answer
1−itan(2argZ)1+itan(2argZ)
Explanation
Solution
Sol. Since |Z| = 1
let Z = cosa + isina
(where a is argument of Z)
Ž Z = 1+tan2(α/2)1−tan2(α/2)+ i 1+tan2(α/2)2tan(α/2)
Ž Z = 1+tan2(α/2)1−tan2(α/2)+2itan(α/2)
Ž Z = (1−itanα/2)(1+itanα/2)(1+itanα/2)2
Ž Z =
Ž (1−itan(α/2)1+itan(α/2))
Ž Z = 1–itan(2Arg. Z) 1+itan(2Arg. Z)